Bis(2-ethylhexyl)phthalate (BEHP) negatively affects testicular functions in different animal species, disturbing reproductive physiology and male fertility. The present study investigated the in vitro acute effect of BEHP on the mechanism of action of ionic calcium (Ca) homeostasis and energy metabolism. In addition, the effect of BEHP on oxidative stress was studied in vitro and in vivo in the testis of Danio rerio (D. rerio). Testes were treated in vitro for 30 min with 1 μM BEHP for Ca influx measurements. Testes were also incubated with 1 μM BEHP for 1 h (in vitro) or 12 h (in vivo) for the measurements of lactate content, C-deoxy-d-glucose uptake, lactate dehydrogenase (LDH) and gamma-glutamyl transpeptidase (GGT) activity, total reactive oxygen species (ROS) production and lipid peroxidation. In addition, the effect of BEHP (1 μM) on GGT, glutamic oxaloacetic transferase (GOT) and glutamic pyruvic transferase (GPT) activity in the liver was evaluated after in vivo treatment for 12 h. BEHP disturbs the Ca balance in the testis when given acutely in vitro. BEHP stimulated Ca influx occurs through L-type voltage-dependent Ca channels (L-VDCC), transitory receptor potential vaniloid (TRPV1) channels, reverse-mode Na/Ca exchanger (NCX) activation and inhibition of sarco/endoplasmic reticulum Ca-ATPase (SERCA). BEHP affected energy metabolism in the testis by decreasing the lactate content and LDH activity. In vitro and in vivo acute effects of BEHP promoted oxidative stress by increasing ROS production, lipid peroxidation and GGT activity in the testis. Additionally, BEHP caused liver damage by increasing GPT activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2020.05.002 | DOI Listing |
Elife
December 2024
Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis.
View Article and Find Full Text PDFBiogerontology
December 2024
Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.
View Article and Find Full Text PDFMAGMA
December 2024
Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
Objectives: Phosphorus-31 magnetic resonance spectroscopic imaging (P-MRSI) is a non-invasive tool for assessing cellular high-energy metabolism in-vivo. However, its acquisition suffers from a low sensitivity, which necessitates large voxel sizes or multiple averages to achieve an acceptable signal-to-noise ratio (SNR), resulting in long scan times.
Materials And Methods: To overcome these limitations, we propose an acquisition and reconstruction scheme for FID-MRSI sequences.
Elife
December 2024
Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, China.
TIPE () has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!