Background: The study of mitochondrial functions in zebrafish was initiated before the 1990s and has effectively supported many of the recent scientific advances in the functional studies of mitochondria.

Scope Of Review: This work elaborates various peculiarities and general advances in the study of mitochondria using this animal model.

Major Conclusions: The inclusion of zebrafish models in scientific research was initiated with structural studies of mitochondria. Then, toxicological studies involving chemical compounds were undertaken. Currently, there is a decisive tendency to use zebrafish to understand how chemicals impair mitochondrial bioenergetics. Zebrafish modeling has been fruitful for the analysis of ion homeostasis, especially for Ca transport, since zebrafish and mammals have the same set of Ca transporters and mitochondrial membrane microdomains. Based on zebrafish embryo studies, our understanding of ROS generation has also led to new insights.

General Significance: For the study of mitochondria, a new era was begun with the inclusion of zebrafish in bioenergetics research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2020.129634DOI Listing

Publication Analysis

Top Keywords

zebrafish
8
study mitochondria
8
inclusion zebrafish
8
mitochondria
4
mitochondria targets
4
targets toxicity
4
toxicity metabolism
4
metabolism zebrafish
4
zebrafish background
4
background study
4

Similar Publications

The temporal control of mitotic exit of individual Schwann cells (SCs) is essential for radial sorting and peripheral myelination. However, it remains unknown when, during their multiple rounds of division, SCs initiate myelin signaling in vivo. By manipulating SC division during development, we report that when SCs skip their division during migration, but not during radial sorting, they fail to myelinate peripheral axons.

View Article and Find Full Text PDF

A Novel Protein NLRP12-119aa that Prevents Rhabdovirus Replication by Disrupting the RNP Complex Formation.

Adv Sci (Weinh)

January 2025

Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.

The accurate assembly of the ribonucleoprotein (RNP) complex is fundamental for the replication and transcription of rhabdoviruses, which are known for their broad pathogenic impact. A novel 119-amino-acid protein, NLRP12-119aa is identified, encoded by the circular RNA circNLRP12, that effectively disrupts the formation of rhabdovirus RNP complexes through two distinct mechanisms and significantly reduces their replication. NLRP12-119aa exhibits a strong affinity for the conserved 18-nucleotide sequence at the start of the leader RNA of rhabdoviruses VSV, SCRV, and RABV, outcompeting their native N protein interactions, thereby disrupting the assembly of RNP complexes and inhibiting viral replication.

View Article and Find Full Text PDF

Taking the natural product cerbinal as the lead compound, 30 novel 5-aryl-cyclopenta[]pyridine derivatives were designed and synthesized based on the previous bioactivity studies of the cyclopenta[]pyridines. The modification of the position-5 of compound was achieved by amination, bromination, and cross coupling using cerbinal as the raw material. The results of the bioactivity tests demonstrated that partial compounds exhibited superior activity against plant viruses compared to compound .

View Article and Find Full Text PDF

Inflammation, a central process in numerous diseases, plays a crucial role in hepatic disorders, arthritis, cardiac conditions, and neurodegenerative ailments. Given the lack of effective anti-inflammatory drugs, it is imperative to assess inflammation severity and explore novel therapeutics. Selenocysteine (Sec), a key mediator of selenium's biological function, is closely involved in anti-inflammatory responses.

View Article and Find Full Text PDF

Correction: Abcg2a is the functional homolog of human ABCG2 expressed at the zebrafish blood-brain barrier.

Fluids Barriers CNS

January 2025

Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 2108, Bethesda, MD, 20892, USA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!