Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 10 M) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 10 M). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.127007 | DOI Listing |
Biomed Chromatogr
January 2022
Citrus Research Institute, Southwest University, Chongqing, China.
Phenthoate is a chiral organophosphate pesticide with a pair of enantiomers which differ in toxicity, behavior and insecticidal activity, and its acute toxicity on human health owing to the inhibition of acetylcholinesterase highlights the need for enantioselective detection of enantiomers. Therefore, this study aimed to establish a simple rapid method for separation and detection of phenthoate enantiomers in fruits, vegetables and grains. The enantiomers were separated using reversed-phase high-performance liquid chromatography-tandem mass spectrometry for the first time.
View Article and Find Full Text PDFChemosphere
September 2020
Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China.
J Chromatogr A
September 2010
Hebei University of Science and Technology, Shijiazhuang, China.
Bull Environ Contam Toxicol
August 2007
College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China.
J AOAC Int
September 2003
Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Tianjin 300071, People's Republic of China.
The separation of enantiomers and diastereomers of 8 commonly used pesticides was investigated by liquid chromatography (LC) using a Chiralcel OD column (cellulose tris-3,5-dimethylphenylcarbamate as the chiral stationary phase) and a Pirkle-type Chirex 3020 column (urea derivative from the reaction of (R)-1-(alpha-naphthyl)ethylamine with (S)-tert-leucine, chemically bonded to 3-aminopropylsilanized silica as the chiral stationary phase). The pesticides studied included one organophosphorus insecticide (phenthoate), 3 triazole fungicides (uniconazole, diniconazole, and propiconazole), and 4 pyrethroids (fenpropathrin, beta-cypermethrin, beta-cyfluthrin, and alpha-fenvalerate). The enantiomers were separated within 20 min with a resolution of > or = 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!