Carbohydrate responsive element binding protein (ChREBP) negatively regulates osteoblast differentiation via protein phosphatase 2A Cα dependent manner.

Int J Biochem Cell Biol

Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 38453, Republic of Korea; Research Institute of Anti-Aging, Daegu University, Gyeongbuk 38453, Republic of Korea. Electronic address:

Published: July 2020

Carbohydrate responsive element binding protein (ChREBP) is a major transcription factor of lipogenesis regulated by glucose status in the liver. However, the function of ChREBP in osteogenic differentiation is unclear. The present study examined the role of ChREBP in osteoblast differentiation in MC3T3-E1 preosteoblast cell line. The mRNA expression of ChREBP, protein phosphatase 2A catalytic subunit-α (PP2A Cα) and the osteogenic genes such as, DNA-binding protein inhibitor (Id1), runt-related transcription factor-2 (Runx2), and alkaline phosphatase (ALP) was measured by qPCR and RT-PCR. Runx2, ChREBP, and PP2A Cα, protein levels were evaluated by Western blotting. ALP staining experiment was carried out to evaluate ALP enzyme activity, and a luciferase reporter assay was performed to analyze Runx2 transcriptional activity. Expression of ChREBP and PP2A Cα did not change during bone morphogenetic protein-2 (BMP2)-induced osteoblast differentiation. Overexpression of ChREBP reduced the osteogenic genes (Runx2 and ALP) expression and ALP activity, while knockdown of ChREBP had the opposite effects. Overexpression of PP2A Cα increased ChREBP expression, while inhibition of PP2A Cα using okadaic acid not only inhibited the expression of ChREBP, but also restored the mRNA and protein expression of Runx2 and activity of ALP enzyme. These results demonstrate that ChREBP inhibits BMP2-induced osteoblast differentiation in a PP2A Cα- dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2020.105766DOI Listing

Publication Analysis

Top Keywords

pp2a cα
20
osteoblast differentiation
16
chrebp
12
expression chrebp
12
carbohydrate responsive
8
responsive element
8
element binding
8
binding protein
8
protein chrebp
8
protein phosphatase
8

Similar Publications

Amyloid-beta peptide (Abeta)-induced death in cerebral endothelial cells (CECs) is preceded by mitochondrial dysfunction and signaling events characteristic of apoptosis. Mitochondria-dependent apoptosis engages Bcl-2 family proteins, especially the BH3-only homologues, which play a key role in initiating the apoptotic cascade. Here, we report that the expression of bim, but not other BH3-only members, was selectively increased in cerebral microvessels isolated from 18-month-old APPsw (Tg2576) mice, a model of cerebral amyloid angiopathy (CAA), suggesting a pivotal role for Bim in Abeta-induced cerebrovascular degeneration in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!