A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kinetic and thermodynamic study of c-Met interaction with single chain fragment variable (scFv) antibodies using phage based surface plasmon resonance. | LitMetric

Mesenchymal epithelial transition factor (c-Met) has been recently regarded as an attractive target for the treatment of cancer. Our previous study showed that c-Met-specific single chain fragment variables (scFvs) can be considered as a promising therapy for cancer, however, their molecular interaction with c-Met protein have not been assessed. Accordingly, in the current study we aim to evaluate the kinetic and thermodynamic properties of c-Met interaction with these scFvs as anticancer agents by means of surface plasmon resonance (SPR) technique. Phage-scFvs were immobilized on the 11-mercaptoundecanoic acid gold chips after carboxylic groups activation by N-ethyl-N-(3-diethylaminopropyl) carbodiimide/N-hydroxysuccinimide and, then the c-Met binding to each scFvs (ES1, ES2, and ES3) at different concentrations (ranging from 20 to 665 μM) was explored. Kinetic studies revealed that ES1 has the highest affinity (K = 3.36 × 10) toward its target at 25°C. Calculation of thermodynamic parameters also showed positive values for enthalpy and entropy changes, which was representative of hydrophobic forces between c-Met and ES1. Furthermore, the positive value of Gibbs free energy indicated that c-Met binding to ES1 was enthalpy-driven. Taken together, we concluded that produced ES1 can be applied as promising scFv-based therapy for diagnosis or targeting of c-Met in various cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2020.105362DOI Listing

Publication Analysis

Top Keywords

kinetic thermodynamic
8
c-met
8
c-met interaction
8
single chain
8
chain fragment
8
surface plasmon
8
plasmon resonance
8
c-met binding
8
es1
5
thermodynamic study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!