Two-dimensional (2D) cell cultures, in which cells grow in flat layers on plastic surfaces, are considered the standard model for use in drug screening and for biological assays. However, these models do not accurately represent in vivo cell organization due to a lack in cell-cell/matrix interactions and in tissue and microenvironment structure. For that reason, three-dimensional (3D) cell cultures have been introduced as an innovative platform in recent years, allowing cells to grow and interact with each other in all three dimensions thanks to an artificial environment. In a 3D model cells show more interesting aspects from a physiological point of view, demonstrating several improvements in viability, morphology, proliferation and differentiations, response to external and internal stimuli, drug metabolism and efficacy and in vivo relevance. This review explores recent techniques in the development of 3D cell models with a particular focus on their application from a pharmacological point of view, starting from the concept of spheroid models generated by scaffold-free or scaffold-based techniques. Finally, special attention is paid to the concept of organoids, 3D constructs that replicate the 3D architecture of intact organs and the technology involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.117784DOI Listing

Publication Analysis

Top Keywords

cell cultures
12
cells grow
8
point view
8
cell
5
methodological aspects
4
aspects pharmacological
4
pharmacological applications
4
applications three-dimensional
4
three-dimensional cancer
4
cancer cell
4

Similar Publications

Establishing a living biobank of pediatric high-grade glioma and ependymoma suitable for cancer pharmacology.

Neuro Oncol

January 2025

Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.

Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.

View Article and Find Full Text PDF

Background: While invasive fusariosis and lomentosporiosis are known to be associated with fungemia, overall data on mold-related fungemia are limited, hampering early management. This study aimed to describe the epidemiology of mold-positive blood cultures.

Methods: Epidemiological and clinical data on mold-positive blood cultures from 2012 to 2022 were obtained from the RESSIF database.

View Article and Find Full Text PDF

Infectious diseases remain a major global health concern. Cistus ladanifer, a plant commonly employed in Moroccan traditional medicine, has been identified as a potential antiviral candidate. This study aimed to evaluate the antiviral activity of C.

View Article and Find Full Text PDF

Measles virus (MeV) is a highly contagious respiratory virus transmitted via aerosols. To understand how MeV exits the airways of an infected host, we use unpassaged primary cultures of human airway epithelial cells (HAE). MeV typically remains cell-associated in HAE and forms foci of infection, termed infectious centers, by directly spreading cell-to-cell.

View Article and Find Full Text PDF

The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!