Formulation design for inkjet-based 3D printed tablets.

Int J Pharm

Department of Pharmaceutical Sciences, University of Connecticut, United States; Department of Chemical and Biomolecular Engineering, University of Connecticut, United States; Institute of Material Sciences, University of Connecticut, United States. Electronic address:

Published: June 2020

The drug loading efficiency was evaluated using a binder-jet 3D printing process by incorporating an active pharmaceutical ingredient (API) in ink, and quantifying the printability property of ink solutions. A dimensionless parameter Ohnesorge was calculated to understand the printability property of the ink solutions. A pre-formulation study was also carried out for the raw materials and printed tablets using thermal analysis and compendial tests. The compendial characterization of the printed tablets was evaluated with respect to weight variation, hardness, disintegration, and size; Amitriptyline Hydrochloride was considered as the model API in this study. Four concentrations of the API ink solutions (5, 10, 20, 40 mg/mL) were used to print four printed tablet batches using the same tablet design file. The excipient mixture used in the study was kept the same and consists of Lactose monohydrate, Polyvinyl pyrrolidone K30, and Di-Calcium phosphate Anhydrate. The minimum drug loading achieved was 30 μg with a minimal variation (RSD) of <0.26%. The distribution of the API on the tablet surface and throughout the printed tablets were observed using SEM-EDS. In contrast, the micro-CT images of the printed tablets indicated the porous surface structure of the tablets. The immediate release properties of the printed tablets were determined using a dissolution study in a modified USP apparatus II.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119430DOI Listing

Publication Analysis

Top Keywords

printed tablets
12
ink solutions
12
drug loading
8
api ink
8
printability property
8
property ink
8
formulation design
4
design inkjet-based
4
printed
4
inkjet-based printed
4

Similar Publications

Selective sensing of terbinafine hydrochloride using carbon-based electrodes: a green and sustainable electroanalytical method for pharmaceutical products.

Anal Methods

January 2025

ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.

Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.

View Article and Find Full Text PDF

Technoference, namely parental screen use in the presence of a child, is a widespread phenomenon that has negative effects on parent-child interaction and communication. When parents use screens around their children there are fewer interactions and parents are less contingent and responsive to the child. Additionally, children show more negative behaviors, such as whining, frustration, and outbursts.

View Article and Find Full Text PDF

Deep learning-based defect detection in film-coated tablets using a convolutional neural network.

Int J Pharm

January 2025

Process Research & Development, Merck & Co., Inc., Rahway, NJ, USA.

Film-coating is a critical step in pharmaceutical manufacturing. Traditional visual inspections for film-coated tablet defect assessment are subjective, inefficient, and labor-intensive. We propose a novel approach utilizing machine learning and image analysis to address these limitations.

View Article and Find Full Text PDF

: An automated extrusion-based material deposition is a contemporary and rapid method for pharmaceutical dose-dispensing and preparing (printing) individualized solid dosage forms. The aim of this study was to investigate and gain knowledge of the feasibility of automated extrusion-based material deposition technology in preparing customized prednisolone (PRD)-loaded gel tablets for veterinary applications (primarily for dogs and cats). : The PRD loads of the extrusion-based deposited gel tablets were 0.

View Article and Find Full Text PDF

Melt-based 3D printing technologies are currently extensively evaluated for research purposes as well as for industrial applications. Classical approaches often require intermediates, which can pose a risk to stability and add additional complexity to the process. The Advanced Melt Drop Deposition (AMDD) technology, is a 3D printing process that combines the principles of melt extrusion with pressure-driven ejection, similar to injection molding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!