RNA phase separation-mediated direction of molecular trafficking under conditions of molecular crowding.

Biophys Rev

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.

Published: June 2020

Living cells are highly crowded with large and small biomolecules. The total concentration of biomolecules can reach 400 mg/ml, and 40% of the cell volume is occupied by biomolecules. Droplet formation in cells via liquid-liquid phase separation may play a role in controlling biochemical reactions in this complex molecular environment. Liquid-liquid phase separation generally involves nucleic acids and proteins as anionic and cationic components, respectively. Significant characteristics of droplets, which make them different from protein aggregation or fibril formation, are reversibility of formation and responsiveness to the molecular environment. In this review, we quantitatively describe the molecular environment inside cells and droplets that participate in controlling central dogma reactions. Finally, we discuss the importance of droplets under conditions of molecular crowding within living cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7311588PMC
http://dx.doi.org/10.1007/s12551-020-00696-3DOI Listing

Publication Analysis

Top Keywords

molecular environment
12
conditions molecular
8
molecular crowding
8
crowding living
8
living cells
8
liquid-liquid phase
8
phase separation
8
molecular
6
rna phase
4
phase separation-mediated
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Significant Impact of a Daytime Halogen Oxidant on Coastal Air Quality.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.

Chlorine radicals (Cl) are highly reactive and affect the fate of air pollutants. Several field studies in China have revealed elevated levels of daytime molecular chlorine (Cl), which, upon photolysis, release substantial amounts of Cl but are poorly represented in current chemical transport models. Here, we implemented a parametrization for the formation of daytime Cl through the photodissociation of particulate nitrate in acidic environments into a regional model and assessed its impact on coastal air quality during autumn in South China.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

Escherichia coli is one of the critical One Health pathogens due to its vast array of virulence and antimicrobial resistance genes. This study used multiplex PCR to determine the occurrence of virulence genes bfp, ompA, traT, eaeA, and stx1 among 50 multidrug-resistant (MDR) E. coli isolates from humans (n = 15), animals (n = 29), and the environment (n = 6) in Dar es Salaam, Tanzania.

View Article and Find Full Text PDF

Automating alloy design and discovery with physics-aware multimodal multiagent AI.

Proc Natl Acad Sci U S A

January 2025

Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139.

The design of new alloys is a multiscale problem that requires a holistic approach that involves retrieving relevant knowledge, applying advanced computational methods, conducting experimental validations, and analyzing the results, a process that is typically slow and reserved for human experts. Machine learning can help accelerate this process, for instance, through the use of deep surrogate models that connect structural and chemical features to material properties, or vice versa. However, existing data-driven models often target specific material objectives, offering limited flexibility to integrate out-of-domain knowledge and cannot adapt to new, unforeseen challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!