The black soil region in Northeast China is an important production base of commodity grain. However, soil erosion is a major threat that has caused a decline in arable land area and productivity and a series of environmental problems in recent years. To understand the current situation of soil erosion and its changes in the whole black soil region, including six treatment regions, we used the spatial-temporal analysis of soil erosion from 2000 to 2015 and the overlay analysis with its drivers; additionally, soil erosion was evaluated qualitatively with the integrated evaluation method, and its change was indicated by the soil erosion change index (SECI). We found that soil erosion that caused soil loss occurred in each treatment region mainly at the light level in 2015. Water erosion, the most widely distributed erosion type, affected the largest area, while most serious erosion at intensive or higher levels stemmed from wind erosion. Although the situation of water erosion was improved in 2015 compared to that in 2000, the overall situation of soil erosion was worse due to the deterioration of wind and freeze-thaw erosion. Grassland, woodland, and cultivated land changes, such as the conversion from grassland to cultivated land, from woodland to sparse woodland and from dry land to paddy land, revealed these changes to a great extent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-020-08298-yDOI Listing

Publication Analysis

Top Keywords

soil erosion
32
erosion
14
soil
12
black soil
12
soil region
12
region northeast
8
northeast china
8
2000 2015
8
situation soil
8
water erosion
8

Similar Publications

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Microtopography-induced hydrological heterogeneity promotes the co-assembly of vascular plant and biocrust communities, providing synergistic protective functions for the Great Wall.

Sci Total Environ

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China. Electronic address:

The Great Wall in China, constructed from rammed earth, faces threats from natural erosion. Vascular plants and biocrusts have enhanced the stability of the Great Wall through various mechanisms; however, understanding of the colonization processes of vascular plants and biocrusts on the wall, as well as their protective mechanisms, remains limited. This study investigated the vascular plant communities, biocrusts, soil moisture content, soil properties, aggregate mechanical stability, aggregate water stability, and soil erodibility factors across seven fine-scale microtopographies of the Great Wall (lower, middle, and upper zones on the east and west faces, as well as the wall crest).

View Article and Find Full Text PDF

Arctic rivers may be the largest net sources of mercury (Hg) to the Arctic Ocean, yet riverine sources of Hg remain poorly characterized compared to atmospheric processes. This article reviews the current state of knowledge on Hg inputs to the Mackenzie River and Valley in Northern Canada from six point and non-point sources. Point sources include the locations of mines, fossil fuel extraction facilities, and retrogressive permafrost thaw slumps.

View Article and Find Full Text PDF

Identifying dissolved reactive phosphorus sources in agricultural runoff and leachate using phosphate oxygen isotopes.

J Contam Hydrol

January 2025

USDA ARS, National Soil Erosion Research Laboratory, West Lafayette, IN 47907, United States of America.

Agricultural phosphorus (P) losses may result from either recently applied fertilizers or from P accumulated in soil and sediment. While both P sources pose an environmental risk to freshwater systems, differentiating between sources is crucial for identifying and implementing management practices to decrease loss. In this study, laboratory rainfall simulations were completed on runoff boxes and undisturbed soil columns before and after fertilizer application.

View Article and Find Full Text PDF

The adoption of sustainable land management practices (SLMPs) is crucial to improve soil health, and farm yield, and potentially limit the degradation of agricultural and ecological systems. However, farmers still encounter diverse challenges when trying to implement SLMPs. Research on the potential mitigation strategies to address the complex challenges to the adoption of SLMPs in the developing countries context is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!