Alzheimer's disease (AD) is a disease characterized by cerebral neuronal degeneration and loss in a progressive manner. Amyloid beta (Aβ) in the brain is toxic to neurons, being a main risk factor for initiation and continuation of cognitive deterioration in AD. Neurotoxicity of Aβ origin is also linked to oxidative stress characterized by excessive lipid peroxidation, protein oxidation, changes in antioxidant systems, and cerebral DNA damage in AD. Furthermore, Aβ can induce oxidative neuronal cell death by a mitochondrial dysfunction. Cellular injury caused by oxidative stress can be possibly prevented by boosting or promoting bodily oxidative defense system by supplying antioxidants in diet or as medications. However, most synthetic antioxidants are found to have cytotoxicity, which prevents their safe use, and limits their administration. For this reason, more attention has been paid to the natural non-toxic antioxidants. One of the most promising groups of non-toxic antioxidative compounds is thought to be polysaccharides. This study investigated the characterization and protective action exerted by exopolysaccharides (EPSs) originated from Lactobacillus delbrueckii ssp. bulgaricus B3 and Lactobacillus plantarum GD2 to protect from apoptotic activity exerted by Aβ among SH-SY5Y cells. We characterized EPSs by elemental analysis, FTIR, AFM, SEM, and XRD. The antioxidant effects of EPSs were determined by the DPPH free radical scavenging activity, hydroxyl radical scavenging activity, metal ion chelating activity, lipid peroxidation inhibitory activity, and superoxide anion scavenging activity method. The protective effects of EPSs were determined by flow cytometry and RT-PCR. Mannose ratio, molecular weight, functional groups, surface morphology, and amorphous character structure of EPSs are thought to play a role in the protective effect of EPSs. EPSs reduced apoptotic activity of Aβ in addition to their depolarizing effect on mitochondrial membrane potential in concentration-dependent manner. These observations contribute the inclusion of EPSs among the therapeutic options used to manage various neurological disorders in the traditional medicine in a scientific manner, indicating that EPSs may be promising natural chemical constituents that need advanced research and development for pharmacological therapy of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7229009 | PMC |
http://dx.doi.org/10.1038/s41598-020-65147-1 | DOI Listing |
Org Biomol Chem
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India.
A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand.
Cholangiocarcinoma (CCA) poses a significant healthcare challenge due to the limited effects of chemotherapeutic drugs. Natural products have gained widespread attention in cancer research according to their promising anti-cancer effects with minimal adverse side effects. This study explored the potential of Tacca chantrieri (TC), a plant rich in bioactive compounds, as a therapeutic agent for CCA.
View Article and Find Full Text PDFGM Crops Food
December 2025
College of Agronomy, Jilin Agricultural University, Changchun, China.
Maize ( L.) is a widely grown food crop around the world. Drought stress seriously affects the growth and development process of plants and causes serious damage to maize yield.
View Article and Find Full Text PDFNat Prod Res
January 2025
The College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
An endophytic actinomycetes, , was -isolated from the leaves of Hook. et Arn. Five compounds were separated from the ethyl acetate extract of the fermentation broth of endophytic actinomycetes, and their structures were confirmed by utilising methods such as nuclear magnetic resonance, mass spectrometry, and literature references.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Atherosclerosis, resulting from chronic inflammation of the arterial wall, serves as the underlying cause of multiple major cardiovascular diseases. Current anti-inflammatory therapies often exhibit limited and unsatisfactory efficacy. To address this, we have designed a selenium-doped copper formate (Cuf-Se) nanozyme for the treatment of atherosclerosis, which possesses superoxide dismutase (SOD) and glutathione peroxidase (GPx)-like activities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!