Saturation transfer MRI can be useful in the characterization of different tumour types. It is sensitive to tumour metabolism, microstructure, and microenvironment. This study aimed to use saturation transfer to differentiate between intratumoural regions, demarcate tumour boundaries, and reduce data acquisition times by identifying the imaging scheme with the most impact on segmentation accuracy. Saturation transfer-weighted images were acquired over a wide range of saturation amplitudes and frequency offsets along with T and T maps for 34 tumour xenografts in mice. Independent component analysis and Gaussian mixture modelling were used to segment the images and identify intratumoural regions. Comparison between the segmented regions and histopathology indicated five distinct clusters: three corresponding to intratumoural regions (active tumour, necrosis/apoptosis, and blood/edema) and two extratumoural (muscle and a mix of muscle and connective tissue). The fraction of tumour voxels segmented as necrosis/apoptosis quantitatively matched those calculated from TUNEL histopathological assays. An optimal protocol was identified providing reasonable qualitative agreement between MRI and histopathology and consisting of T and T maps and 22 magnetization transfer (MT)-weighted images. A three-image subset was identified that resulted in a greater than 90% match in positive and negative predictive value of tumour voxels compared to those found using the entire 24-image dataset. The proposed algorithm can potentially be used to develop a robust intratumoural segmentation method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228927PMC
http://dx.doi.org/10.1038/s41598-020-64912-6DOI Listing

Publication Analysis

Top Keywords

intratumoural regions
16
saturation transfer
12
transfer mri
8
tumour voxels
8
tumour
7
intratumoural
5
regions
5
saturation
5
automated segmentation
4
segmentation pipeline
4

Similar Publications

Clear cell kidney cancers are characterized both by conserved oncogenic driver events and by marked intratumor genetic and phenotypic heterogeneity, which help drive tumor progression, metastasis, and resistance to therapy. How these are reflected in transcriptional programs within the cancer and stromal cell components remains an important question with the potential to drive novel therapeutic approaches to treating cancer. To better understand these programs, we perform single-cell transcriptomics on 75 multi-regional biopsies from kidney tumors and normal kidney.

View Article and Find Full Text PDF

Chromothripsis, a hallmark of cancer, is characterized by extensive and localized DNA rearrangements involving one or a few chromosomes. However, its genome-wide frequency and characteristics in urothelial carcinoma (UC) remain largely unknown. Here, by analyzing single-regional and multi-regional whole-genome sequencing (WGS), we present the chromothripsis blueprint in 488 UC patients.

View Article and Find Full Text PDF

BACKGROUND Vestibular schwannoma is a slow-growing benign tumor arising from the 8th cranial nerve. It can originate in the cerebellopontine angle (CPA). This retrospective study aimed to investigate the factors associated with outcomes following surgical resection of vestibular schwannoma in the CPA in 30 patients at a single center in Turkey, focusing on postoperative intratumoral hemorrhage.

View Article and Find Full Text PDF

Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).

Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH) wild-type (IDH) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDH) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!