Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: For the past two decades, diffusion tensor imaging (DTI)-derived metrics allowed the characterization of Alzheimer's disease (AzD). Previous studies reported only a few parameters (most commonly fractional anisotropy, mean diffusivity, and axial and radial diffusivities measured at selected regions). We aimed to assess the diagnostic performance of 11 DTI-derived tensor metrics by using a global approach.
Materials And Methods: A prospective study performed in 34 subjects: 12 healthy elders, 11 mild cognitive impairment (MCI) patients, and 11 patients with AzD. Postprocessing of DTI magnetic resonance imaging allowed the calculation of 11 tensor metrics. Anisotropies included fractional (FA), and relative (RA). Diffusivities considered simple isotropic diffusion (p), simple anisotropic diffusion (q), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD). Tensors included the diffusion tensor total magnitude (L); and the linear (Cl), planar (Cp), and spherical tensors (Cs). We performed a multivariate discriminant analysis and diagnostic tests assessment.
Results: RD was the only variable selected to assemble a predictive model: Wilks' λ = 0.581, χ (2) = 14.673, P = 0.001. The model's overall accuracy was 64.5%, with areas under the curve of 0.81, 0.73 and 0.66 to diagnose AzD, MCI, and healthy brains, respectively.
Conclusions: Global DTI-derived RD alone can discriminate between healthy elders, MCI, and AzD patients. Although this study proves evidence of a potential biomarker, it does not provide clinical guidance yet. Additional studies comparing DTI metrics might determine their usefulness to monitor disease progression, measure outcome in drug trials, and even perform the screening of pre-AzD subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4103/0028-3886.284376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!