Background: Autologous CD19 chimeric-antigen receptor (CAR) T-cells are an effective salvage therapy for patients with relapsed or refractory B cell malignancies. The essential first step in the production is the collection of mature lymphocytes through leukapheresis. It is a challenging procedure given the fact patients are heavily pretreated and the special considerations of pediatric apheresis.
Methods: We analyzed the data of leukapheresis outcome for CAR T production in a phase 1b/2 clinical trial enrolling 34 children, adolescents and young adults with relapsed or refractory B-cell malignancies.
Results: All patients underwent a single leukapheresis. Given a short production time for CAR T-cells, most patients received bridging therapy prior to apheresis. Leukapheresis was performed using peripheral venous access in the majority (82%) of patients, and the remainder required arterial line or central venous access. T-cell collection efficiency (CE) was variable with a median of 18%. No apheresis-related adverse events were noted, and all procedures were successful but two: one resulting in lower than target dose (1 × 10 CAR + cells/kg) and the other in failure of CAR T-cell production.
Conclusions: Collection of sufficient T-cells in heavily pretreated pediatric patients via a single apheresis procedure is feasible even with relatively low T-cell CE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.transci.2020.102769 | DOI Listing |
Clin Kidney J
January 2025
Department of Medicine, Universidad Autonoma de Madrid and IIS-Fundacion Jimenez Diaz, Madrid, Spain.
Chimeric antigen receptor T (CAR-T) cell therapy, an emerging personalized immunotherapy for various haematologic malignancies, autoimmune diseases and other conditions, involves the modification of patients' T cells to express a chimeric antigen receptor that recognizes tumour or autoimmune cell antigens, allowing CAR-T cells to destroy cancerous and other target cells selectively. Despite remarkable clinical improvements in patients, multiple adverse effects have been associated with CAR-T cell therapy. Among the most recognized adverse effects are cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome and tumour lysis syndrome.
View Article and Find Full Text PDFMov Disord Clin Pract
January 2025
Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Dvision of Neurology, Toronto Western Hospital, UHN, Krembil Brain Institute, University of Toronto, Toronto, Ontario, Canada.
Nat Med
January 2025
Department of Hematology, University Hospital of Rennes, UMR U1236, INSERM, University of Rennes, French Blood Establishment, Rennes, France.
The risk of T cell malignancies after chimeric antigen receptor (CAR) T cell therapy is a concern, although the true incidence remains unclear. Here we analyzed the DESCAR-T registry database, encompassing all pediatric and adult patients with hematologic malignancies who received CAR T cell therapy in France since 1 July 2018. Of the 3,066 patients included (2,536 B cell lymphoma, 162 B cell acute lymphoblastic leukemia (ALL) and 368 multiple myeloma), 1,680 (54.
View Article and Find Full Text PDFNat Immunol
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Chimeric antigen receptor T cells (CAR T cells) with T stem (T) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human T cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RACCR7TCF1 T cell-like CAR T cells from both healthy donors and patients with cancer.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Institute of Haematology, Royal Prince Alfred Hospital, SLHD, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, NSW, Australia.
CD19 directed chimeric antigen receptor (CAR) T-cell therapy is now standard of care for relapsed/refractory large B-cell non-Hodgkin lymphoma. Despite good overall response rates, many patients still experience disease progression and therefore it is important to predict those at risk of relapse following CAR T-cell therapy. We performed a prospective study using a flow cytometric assay at a single treatment centre to assess early CAR T-cell expansion in vivo 6 - 9 days after CAR-T cell infusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!