Background: Recent studies show that oxidative stress is associated with the pathogenesis of schizophrenia. There are two major types of antioxidant systems in vivo, namely enzymatic antioxidants and non-enzymatic antioxidants. This study investigated differences of non-enzymatic antioxidants between schizophrenia patients and healthy controls.

Methods: Peripheral UA, ALB, and TBIL of 107 schizophrenic patients in the acute stage and 101 in the remission stage were measured respectively, so were 273 healthy controls.

Results: The levels of UA (P = 0.020) and TBIL (P < 0.001) of schizophrenic patients in the acute stage were higher than those of healthy controls, while the level of ALB (P < 0.001) was lower. Similar results were detected form schizophrenic patients in the remission stage. Schizophrenic patients in the acute stage were divided into antipsychotics-use subgroup (n = 56) and antipsychotics-naïve/free subgroup (n = 51). The level of UA (P = 0.001) in the antipsychotics-use subgroup was higher than that in the antipsychotics-naïve/free subgroup, while the level of TBIL (P = 0.002) was lower than that in the antipsychotics-naïve/free subgroup. Seventy-seven schizophrenic patients in the acute stage were followed up, and there was no significant difference in the level of UA before and after treatment, but levels of ALB (P < 0.001) and TBIL (P < 0.001) decreased significantly after the treatment.

Conclusion: This study demonstrated that the dysfunction of the peripheral non-enzymatic anti-oxidation system might be involved in the pathogenesis of schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227358PMC
http://dx.doi.org/10.1186/s12888-020-02635-8DOI Listing

Publication Analysis

Top Keywords

non-enzymatic antioxidants
12
peripheral non-enzymatic
4
antioxidants
4
antioxidants patients
4
patients schizophrenia
4
schizophrenia case-control
4
case-control study
4
study background
4
background studies
4
studies oxidative
4

Similar Publications

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

This study investigates the effect of 100 mg L thymol treatment on the quality of post-harvest peppers stored at 10 °C. The results showed that thymol treatment significantly reduced decay rate, reactive oxygen species (ROS) accumulation, and saturated fatty acid levels in peppers. Moreover, unsaturated fatty acids, non-enzymatic antioxidants, and antioxidant enzyme levels increased after treatment.

View Article and Find Full Text PDF

The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.

View Article and Find Full Text PDF

Guava is a fruit crop widely exploited in the Northeast region of Brazil. However, its exploitation is limited by water scarcity and, in many cases, producers are forced to use water with high levels of salts in irrigation. Thus, it is necessary to develop techniques to induce plant tolerance to salt stress, and the foliar application of a non-enzymatic compound such as ascorbic acid is a promising alternative to mitigate the deleterious effects on plants.

View Article and Find Full Text PDF

Saline-alkaline stress has caused severe ecological and environmental problems. Castor bean is a potential alkali-tolerant plant, however, its reactive oxygen species (ROS) regulatory mechanisms under alkaline stress remain unclear. This study investigated the physiological, transcriptomic, and metabolomic characteristics of two varieties (ZB8, alkaline-sensitive; JX22, alkaline-resistant) under alkaline stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!