Quantum furling and unfurling are inelastic transitions between localized and delocalized electronic states. We predict scenarios where these processes govern charge transport through donor-bridge-acceptor molecular junctions. Like in the case of ballistic transport, the resulting currents are nearly independent of the molecular bridge length. However, currents involving quantum furling and unfurling processes can be controlled by the coupling to vibrations in the intra-molecular and the extra-molecular environment, which can be experimentally tuned. Our study is based on rate equations for exchange of energy (bosons) and particles (fermions) between the molecular bridge and its environment. An efficient algorithm is introduced for a compact representation of the relevant rate equations, which utilizes the redundancies in the rate matrix and the sparsity of the creation and annihilation operators in the molecular Fock space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0005412 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!