High-field nuclear magnetic resonance (NMR) spectroscopy is an indispensable technique for identification and characterization of chemicals and biomolecular structures. In the vast majority of NMR experiments, nuclear spin polarization arises from thermalization in multi-Tesla magnetic fields produced by superconducting magnets. In contrast, NMR instruments operating at low magnetic fields are emerging as a compact, inexpensive, and highly accessible alternative but suffer from low thermal polarization at a low field strength and consequently a low signal. However, certain hyperpolarization techniques create high polarization levels on target molecules independent of magnetic fields, giving low-field NMR a significant sensitivity boost. In this study, SABRE (Signal Amplification By Reversible Exchange) was combined with high homogeneity electromagnets operating at mT fields, enabling high resolution H, C, N, and F spectra to be detected with a single scan at magnetic fields between 1 mT and 10 mT. Chemical specificity is attained at mT magnetic fields with complex, highly resolved spectra. Most spectra are in the strong coupling regime where J-couplings are on the order of chemical shift differences. The spectra and the hyperpolarization spin dynamics are simulated with SPINACH. The simulations start from the parahydrogen singlet in the bound complex and include both chemical exchange and spin evolution at these mT fields. The simulations qualitatively match the experimental spectra and are used to identify the spin order terms formed during mT SABRE. The combination of low field NMR instruments with SABRE polarization results in sensitive measurements, even for rare spins with low gyromagnetic ratios at low magnetic fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228779 | PMC |
http://dx.doi.org/10.1063/5.0002412 | DOI Listing |
Nat Mater
January 2025
Institute of Electrical and Microengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Chirality, a basic property of symmetry breaking, is crucial for fields such as biology and physics. Recent advances in the study of chiral systems have stimulated interest in the discovery of symmetry-breaking states that enable exotic phenomena such as spontaneous gyrotropic order and superconductivity. Here we examine the interaction between light chirality and electron spins in indium selenide and study the effect of magnetic field on emerging tunnelling photocurrents at the Van Hove singularity.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Shanghai Berry Electronic Technology Co., Ltd., Shanghai, 200000, China.
In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain.
View Article and Find Full Text PDFPsychoradiology
November 2024
Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, the People Republic of China.
This review examines the methodological challenges and advancements in laminar functional magnetic resonance imaging (fMRI). With the advent of ultra-high-field MRI scanners, laminar fMRI has become pivotal in elucidating the intricate micro-architectures and functionalities of the human brain at a mesoscopic scale. Despite its profound potential, laminar fMRI faces significant challenges such as signal loss at high spatial resolution, limited specificity to laminar signatures, complex layer-specific analysis, the necessity for precise anatomical alignment, and prolonged acquisition times.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia.
The magnetic, electronic, and topological properties of GdPtBi were systematically investigated using first-principles density functional theory (DFT) calculations. Various magnetic configurations were examined, including ferromagnetic (FM) and antiferromagnetic (AFM) states, with particular focus on AFM states where the Gd magnetic moments align either parallel (AFM) or perpendicular (AFM) to the [111] crystal direction. For AFM, the in-plane angles were varied at = 0°, 15°, and 30° (denoted as AFM, AFM, and AFM, respectively).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!