Hereditary breast and ovarian cancer (HBOC) syndrome is mainly caused by mutations in the and genes. The 3'UTR region allows for the binding of microRNAs, which are involved in genetic tune regulation. We aimed to identify allelic variants on 3'UTR miRNA-binding sites in the and genes in HBOC patients. Blood samples were obtained from 50 patients with HBOC and from 50 controls. The 3'UTR regions of and were amplified by PCR and sequenced to identify genetic variants using bioinformatics tools. We detected nine polymorphisms in 3'UTR, namely: four in (rs3092995 (C/G), rs8176318 (C/T), rs111791349 (G/A), and rs12516 (C/T)) and five in (rs15869 (A/C), rs7334543 (A/G), rs1157836 (A/G), and rs75353978 (TT/del TT)). A new variant in position c.*457 (A/C) on 3'UTR of was also identified. The following three variants increased the risk of HBOC in the study population: rs111791349-A, rs15869-C, and c.*457-C (odds ratio (OR) range 3.7-15.4; < 0.05). Genetic variants into the 3'UTR of and increased the risk of HBOC between 3.7-15.4 times in the study population. The presence/absence of these polymorphisms may influence the loss/creation of miRNA binding sites, such as hsa-miR-1248 in 3'UTR or the hsa-miR-548 family binding site in . Our results add new evidence of miRNA participation in the pathogenesis of HBOC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7277914 | PMC |
http://dx.doi.org/10.3390/diagnostics10050298 | DOI Listing |
World J Surg Oncol
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring Road West, Fengtai District, Beijing, 100070, China.
Background: This study aims to identify a pathogenic SDHD mutation associated with hereditary head and neck paraganglioma (HNPGL) in a Chinese family and to explore its implications for genetic counseling.
Methods: The study involved a family with 15 members spanning three generations. A 31-year-old patient (II-4) was diagnosed with a left parotid gland tumor and a right carotid body tumor, while both the father and elder sister had right carotid body tumors, and the third sister had bilateral carotid body tumors.
BMC Pregnancy Childbirth
January 2025
Department of Clinical Genetics, Rennes University Hospital, Rennes, France.
Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.
View Article and Find Full Text PDFNeurol Ther
January 2025
Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
Hereditary transthyretin amyloidosis (ATTRv, v for variant) is a genetic disorder characterized by the deposition of misfolded transthyretin (TTR) protein in tissues, resulting in progressive dysfunction of multiple organs, including the nervous system, heart, kidneys, and gastrointestinal (GI) tract. Noninvasive serum biomarkers have become key tools for diagnosing and monitoring ATTRv. This review examines the role of available biomarkers for neurological, cardiac, renal, gastrointestinal, and multisystemic involvement in ATTRv.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China.
Purpose: This study identified novel variants of the FSIP2 and SPEF2 genes in multiple morphological abnormalities of the sperm flagella (MMAF) patients and to investigate the potential effect of variations on male infertility and assisted reproductive outcomes.
Methods: Whole-exome sequencing was performed in 106 Chinese MMAF patients. The discovered variants were evaluated in silico and confirmed by Sanger sequencing.
Nat Genet
January 2025
Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!