Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reduced graphene oxide/poly(pyrrol--thiophene) (RGO/COP), prepared by facile in-situ oxidative copolymerization, is reported as a new hybrid composite material with improved supercapacitance performance as compared to the respective homopolymers and their composites with RGO. The as-prepared hybrid materials were characterized with ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. The electrochemical behavior and energy storage properties of the materials were tested by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD), and electrostatic impedance spectroscopy (EIS) techniques in 0.5 M HSO. The specific capacitance (Csp) for RGO/COP calculated from the CV curve was 467 F/g at a scan rate of 10 mV/s. While the Csp calculated from the GCD was 417 F/g at a current density of 0.81 A/g. The energy density calculated was 86.4 Wh/kg with a power density of 630 W/kg. The hybrid composite exhibits good cyclic stability with 65% capacitance retention after 1000 cycles at a scan rate of 100 mV/s. The present work brings a significance development of RGO/COP composites to the electrode materials for pseudocapacitive application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285357 | PMC |
http://dx.doi.org/10.3390/polym12051110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!