Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: For the shared control systems, how to trade off the control weight between robot autonomy and human operator is an important issue, especially for BCI-based systems. However, most of existing shared controllers have paid less attention to the effects caused by subjects with different levels of brain control ability.
Approach: In this paper, a brain state evaluation network, termed BSE-NET, is proposed to evaluate subjects' brain control ability online based on quantized attention-gated kernel reinforcement learning. With the output of BSE-NET (confidence score), a shared controller is designed to dynamically adjust the control weight between robot autonomy and human operator.
Main Results: The experimental results show that most of subjects achieved high and stable experimental success rate of approximately 90%. Furthermore, for subjects with different accuracy on EEG decoding, a proper confidence score can be dynamically generated to reflect their levels of brain control ability, and the proposed system can effectively adjust the control weight in all-time shared control.
Significance: We discuss how our proposed method shows promise for BCI applications that can evaluate subjects' brain control ability online as well as provide a method for the research on self-adaptive shared control to adaptively balance control weight between subject's instruction and robot autonomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ab937e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!