A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation. | LitMetric

Self-adaptive shared control with brain state evaluation network for human-wheelchair cooperation.

J Neural Eng

School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China. Pazhou Lab, Guangzhou 510335, People's Republic of China.

Published: July 2020

Objective: For the shared control systems, how to trade off the control weight between robot autonomy and human operator is an important issue, especially for BCI-based systems. However, most of existing shared controllers have paid less attention to the effects caused by subjects with different levels of brain control ability.

Approach: In this paper, a brain state evaluation network, termed BSE-NET, is proposed to evaluate subjects' brain control ability online based on quantized attention-gated kernel reinforcement learning. With the output of BSE-NET (confidence score), a shared controller is designed to dynamically adjust the control weight between robot autonomy and human operator.

Main Results: The experimental results show that most of subjects achieved high and stable experimental success rate of approximately 90%. Furthermore, for subjects with different accuracy on EEG decoding, a proper confidence score can be dynamically generated to reflect their levels of brain control ability, and the proposed system can effectively adjust the control weight in all-time shared control.

Significance: We discuss how our proposed method shows promise for BCI applications that can evaluate subjects' brain control ability online as well as provide a method for the research on self-adaptive shared control to adaptively balance control weight between subject's instruction and robot autonomy.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ab937eDOI Listing

Publication Analysis

Top Keywords

control weight
16
brain control
16
shared control
12
robot autonomy
12
control ability
12
control
11
self-adaptive shared
8
brain state
8
state evaluation
8
evaluation network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!