Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coherent modulation imaging (CMI) has been shown to be an effective lensless diffraction approach to imaging general extended samples with fast algorithmic convergence and high robustness to data imperfection. Being a single-shot technique, CMI holds a high potential for imaging dynamics with ultrafast pulses like the ones from free-electron lasers. In the reported work, strong modulators have been suggested for CMI to have the optimal performance, which may be an obstacle for the wide adoption of the method. Here we show that with our improved reconstruction algorithm the requirements on the modulation depth and feature size of a modulator can be relaxed. Furthermore, we demonstrate that when cascade configuration is used, the modulators can be even weaker while providing lower image errors in reconstruction than the case of a single modulator. Detailed numerical studies in both far-field and near-field experiment geometry are given via simulation. A relaxed requirement on modulators in CMI could pave the way for its wide use in biology and materials science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2020.112990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!