A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel wet-solid states serial anaerobic digestion process for enhancing methane recovery of aquatic plant biomass. | LitMetric

Novel wet-solid states serial anaerobic digestion process for enhancing methane recovery of aquatic plant biomass.

Sci Total Environ

Graduate School of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.

Published: August 2020

Aquatic plant biomass is characterised by high moisture content and a lignocellulose structure. To apply the anaerobic digestion (AD) treatment to aquatic plants, the simultaneous achievement of high methane (CH) recovery per biomass volume and high biodegradability have been a challenge owing to these characteristics. Herein, we propose a novel two-stage serial wet- and solid-state AD (SS-AD) system that quickly digests the labile cytoplasm fraction in the first wet AD reactor in a short retention time while slowly digesting the lignocellulosic fraction in the later SS-AD with long retention time. In this study, the effect of this serial AD on CH recovery and chemical oxygen demand (COD) balance from aquatic plant biomass was examined in a semi-continuous operation. Elodea nuttallii, which grows excessively in the southern basin of Lake Biwa, Japan, was used as the substrate. For comparison, single-stage AD with different hydraulic retention times (HRTs) (30 d and 15 d) was performed. The CH conversion efficiency in single-stage AD deteriorated from 47.6 to 33.1% COD with shortened HRT, probably owing to the low degradability of slowly degrading fraction (i.e. lignocellulose) in the short retention time. In contrast, the serial AD under the same HRT (15 d) as a single-stage AD exhibited higher CH conversion efficiency of 65.1% COD, mainly owing to the enhanced degradation of slowly degrading fraction because of the prolonged solid retention time (52.2 d) of the entire system. The CH recovery from the wet AD alone in the serial AD system surpassed that from the 30 d-HRT of the single-stage AD, possibly due to the appropriate HRT for labile fraction and/or the microbial recirculation. The serial wet and SS-AD was suggested as a suitable technology for the treatment of aquatic plant biomass with recalcitrant cell walls and a labile cytoplasm.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138993DOI Listing

Publication Analysis

Top Keywords

aquatic plant
16
plant biomass
16
retention time
16
anaerobic digestion
8
methane recovery
8
treatment aquatic
8
labile cytoplasm
8
short retention
8
conversion efficiency
8
slowly degrading
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!