Background Context: Abnormal Wnt signaling in intervertebral discs (IVDs) progresses degenerative disc disease (DDD) pathogenesis by impairing nucleus pulposus cell function, decreasing matrix deposition, and accelerating fibrosis.

Purpose: This study was conducted to evaluate the effects of lorecivivint (LOR; SM04690), a small-molecule Wnt pathway inhibitor, on IVD cells and in an animal model of DDD.

Study Design: We used in vitro assays and a rat model of DDD to test the effects of LOR on nucleus pulposus cell senescence and viability, annulus fibrosus (AF) cell fibrosis, and cartilage regeneration and protection.

Methods: Wnt pathway gene expression was measured in human NP and AF cell cultures treated with LOR or DMSO (vehicle). Chondrocyte-like differentiation of rat and human NP cells, NP cell senescence and protection, and AF cell fibrosis were assessed using gene expression and immunocytochemistry. Disc and plasma pharmacokinetics were analyzed following intradiscal LOR injection in rats. In vivo effects of LOR and vehicle on AF integrity, AF/NP junction, NP cellularity and matrix, and disc height were compared using histopathology and radiography in a rat coccygeal IVD needle-puncture model of DDD.

Results: In NP and AF cell cultures, LOR-inhibited Wnt pathway gene expression compared with vehicle. In NP cells, LOR inhibited senescence, decreased catabolism, and induced differentiation into chondrocyte-like cells; in AF cells, LOR decreased catabolism and inhibited fibrosis. A single intradiscal LOR injection in rats resulted in therapeutic disc concentrations (~30 nM) for >180 days and minimal systemic exposure. DDD-model rats receiving LOR qualitatively demonstrated increased cartilage matrix and reduced AF lamellar disorganization and fragmentation with significantly (p<.05) improved histology scores and increased disc height compared with vehicle.

Conclusions: LOR showed beneficial effects on IVD cells in vitro and reduced disease progression in a rat model of DDD compared with vehicle, suggesting that LOR may have disease-modifying therapeutic potential.

Clinical Significance: The current therapeutic options for DDD are pain management and surgical intervention; there are no approved therapies that alter the progression of DDD. Our data support advancing LOR into clinical development as an injectable, small-molecule, potential disease-modifying treatment for DDD in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2020.04.024DOI Listing

Publication Analysis

Top Keywords

wnt pathway
16
gene expression
12
lor
9
degenerative disc
8
disc disease
8
nucleus pulposus
8
pulposus cell
8
effects lor
8
cell senescence
8
cell fibrosis
8

Similar Publications

The evolutionary origin of the vertebrate brain remains a major subject of debate, as its development from a dorsal tubular neuroepithelium is unique to chordates. To shed light on the evolutionary emergence of the vertebrate brain, we compared anterior neuroectoderm development across deuterostome species, using available single-cell datasets from sea urchin, amphioxus, and zebrafish embryos. We identified a conserved gene co-expression module, comparable to the anterior gene regulatory network (aGRN) controlling apical organ development in ambulacrarians, and spatially mapped it by multiplexed in situ hybridization to the developing retina and hypothalamus of chordates.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Legg-Calvé-Perthes disease (LCPD) involves femoral head osteonecrosis caused by disrupted blood supply, leading to joint deformity and early osteoarthritis. This study investigates the role of miRNA-223-5p in regulating hypoxia-induced apoptosis and enhancing osteogenesis in bone marrow mesenchymal stem cells (BMSCs). Utilizing a juvenile New Zealand white rabbit model of LCPD established through femoral neck ligation, we transfected BMSCs with miR-223-5p mimics, inhibitors, and controls, followed by hypoxic exposure.

View Article and Find Full Text PDF

Moracin M promotes hair regeneration through activation of the WNT/β-catenin pathway and angiogenesis.

Arch Dermatol Res

January 2025

Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk, 54538, South Korea.

Hair follicle growth depends on the intricate interaction of cells within the follicle and its vascular supply. Current FDA-approved treatments like minoxidil have limitations, including side effects and the need for continuous use. Moracin M, a compound from Moraceae family, was investigated for its effects on hair growth and vascular regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!