Adipose-derived mesenchymal stem cells (ADMSCs) used in combination with nanoparticles or scaffolds represent promising candidates for bone engineering. Compared to bone marrow-derived MSCs (BMMSCs), ADMSCs show a relatively low capacity for osteogenesis. In the current study, miR-24 was identified as an osteogenesis- and adipogenesis-related miRNA that performs opposing roles (inhibition in osteogenesis and promotion in adipogenesis) during these two differentiation processes. Through bioinformatics analysis and luciferase reporter assays, homeobox protein Hox-B7 (HOXB7) was identified as a potential novel downstream target of miR-24 that contains a miR-24 binding site in the 3'-UTR of its mRNA. Overexpression of HOXB7 could partly halt the inhibitory effect of miR-24 on osteogenesis, and downregulation of HOXB7 could also partly suppress the positive effect of miR-24 on adipogenesis. Furthermore, immunoprecipitation experiments found that HOXB7 and β-catenin formed a functional complex that acted as an essential modulator during osteogenesis and adipogenesis of ADMSCs. After transfecting ADMSCs with an MSNs-PEI-miR-24 agomir or antagomir and loading the cells onto gelatin-chitosan scaffolds, the compounds were assessed for their abilities to repair the critical-sized calvarial defects in rats. Comprehensive evaluation, including micro-CT, sequential fluorescent labeling, and immunohistochemistry analysis, revealed that silencing miR-24 distinctly promoted in vivo bone remolding, whereas overexpression of miR-24 significantly repressed bone formation. Taken together, our findings demonstrated opposite roles for the miR-24/HOXB7/β-catenin signaling pathway in the osteogenesis and adipogenesis of ADMSCs, which may provide a novel mechanism for determining the balance between these two biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.202000006RR | DOI Listing |
Cell Commun Signal
January 2025
Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
Background: TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive.
Methods: Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection.
J Gene Med
January 2025
Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen City, Guangdong, China.
Purpose: Postmenopausal osteoporosis (PMO) is mainly concerned with the imbalance of bone resorption and bone formation. Icariin (ICA) plays a vital role in bone protection. This study investigated the mechanism of ICA in PMO rats.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Orthopedics, Huai'an Hospital of Huai'an City Huai'an 223200, Jiangsu, China.
Background: Steroid-induced osteonecrosis of the femoral head (SONFH) is a pathological condition primarily driven by an impaired balance in the differentiation of bone marrow mesenchymal stem cells (BMSCs) into adipogenic and osteogenic lineages. This study aimed to explore the role of miR-129-5p as a regulator of SONFH progression and associated mechanisms.
Methods: BMSCs were harvested from a rat SONFH model.
Cells
December 2024
Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany.
The present study investigates the influence of nitrosamines and etoposide on mesenchymal stromal cells (MSCs) in a differentiation state- and biological age-dependent manner. The genotoxic effects of the agents on both neonatal and adult stem cell populations after treatment, before, or during the course of differentiation, and the sensitivity of the different MSC types to different concentrations of MNU or etoposide were assessed. Hereby, the multipotent differentiation capacity of MSCs into osteoblasts, adipocytes, and chondrocytes was analyzed.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
Protein kinase C (PKC) plays an essential role during many biological processes including development from early embryonic stages until the terminal differentiation of specialized cells. This review summarizes the current knowledge about the involvement of PKC in molecular processes during the differentiation of stem/precursor cells into tissue cells with a particular focus on osteogenic, adipogenic, chondrogenic and neuronal differentiation by using a comprehensive approach. Interestingly, studies examining the overall role of PKC, or one of its three isoform groups (classical, novel and atypical PKCs), often showed controversial results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!