When can ecological interactions drive an entire ecosystem into a persistent non-equilibrium state, where many species populations fluctuate without going to extinction? We show that high-diversity spatially heterogeneous systems can exhibit chaotic dynamics which persist for extremely long times. We develop a theoretical framework, based on dynamical mean-field theory, to quantify the conditions under which these fluctuating states exist, and predict their properties. We uncover parallels with the persistence of externally-perturbed ecosystems, such as the role of perturbation strength, synchrony and correlation time. But uniquely to endogenous fluctuations, these properties arise from the species dynamics themselves, creating feedback loops between perturbation and response. A key result is that fluctuation amplitude and species diversity are tightly linked: in particular, fluctuations enable dramatically more species to coexist than at equilibrium in the very same system. Our findings highlight crucial differences between well-mixed and spatially-extended systems, with implications for experiments and their ability to reproduce natural dynamics. They shed light on the maintenance of biodiversity, and the strength and synchrony of fluctuations observed in natural systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228057PMC
http://dx.doi.org/10.1371/journal.pcbi.1007827DOI Listing

Publication Analysis

Top Keywords

strength synchrony
8
complex interactions
4
interactions create
4
create persistent
4
fluctuations
4
persistent fluctuations
4
fluctuations high-diversity
4
high-diversity ecosystems
4
ecosystems ecological
4
ecological interactions
4

Similar Publications

Alterations of synaptic plasticity and brain oscillation are associated with autophagy induced synaptic pruning during adolescence.

Cogn Neurodyn

December 2025

College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, 300071 PR China.

Adolescent brain development is characterized by significant anatomical and physiological alterations, but little is known whether and how these alterations impact the neural network. Here we investigated the development of functional networks by measuring synaptic plasticity and neural synchrony of local filed potentials (LFPs), and further explored the underlying mechanisms. LFPs in the hippocampus were recorded in young (21 ~ 25 days), adolescent (1.

View Article and Find Full Text PDF

Synaptic effects on the intermittent synchronization of gamma rhythms.

Cogn Neurodyn

December 2024

Department of Mathematical Sciences, Indiana University Indianapolis, Indianapolis, IN 46202 USA.

Synchronization of neural activity in the gamma frequency band is associated with various cognitive phenomena. Abnormalities of gamma synchronization may underlie symptoms of several neurological and psychiatric disorders such as schizophrenia and autism spectrum disorder. Properties of neural oscillations in the gamma band depend critically on the synaptic properties of the underlying circuits.

View Article and Find Full Text PDF

Synaptic plasticity: from chimera states to synchronicity oscillations in multilayer neural networks.

Cogn Neurodyn

December 2024

State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049 People's Republic of China.

This research scrutinizes the simultaneous evolution of each layer within a multilayered complex neural network and elucidates the effect of synaptic plasticity on inter-layer dynamics. In the absence of synaptic plasticity, a predominant feedforward effect is observed, resulting in the manifestation of complete synchrony in deep networks, with each layer assuming a chimera state. A significant increase in the number of synchronized neurons is observed as the layers augment, culminating in complete synchronization in the deeper sections.

View Article and Find Full Text PDF

Relational neuroscience: Insights from hyperscanning research.

Neurosci Biobehav Rev

December 2024

Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom.

Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models.

View Article and Find Full Text PDF

We study the asymptotic dynamics of the high-dimensional Kuramoto oscillators on the unit sphere with two- and three-body interactions that trigger competition between synchrony and non-synchrony. In this work, we find a critical threshold between interaction strengths for complete synchronizability. Moreover, critical slowing down is observed at this phase transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!