Superlattice structures of In(Al)GaAs with localized ErAs trap centers feature excellent material properties for terahertz (THz) generation and detection. The carrier lifetime of these materials as emitter and receiver has been measured as 1.76 ps and 0.39 ps, respectively. Packaged photoconductors driven by a 1550 nm, 90 fs commercial Toptica "TeraFlash pro" system feature a 4.5 THz single shot bandwidth with more than 60 dB dynamic range. The emitted THz power of the ErAs:In(Al)GaAs emitter versus laser power has been recorded with a pyroelectric detector calibrated by the Physikalisch Technische Bundesanstalt (PTB). The maximum power was 164 µW at a laser power of 42 mW and a bias of 200 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.388870 | DOI Listing |
Nat Med
January 2025
Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
Sci Rep
January 2025
Los Alamos National Laboratory, Los Alamos, NM, 87544, USA.
Detecting shielded special nuclear material, such as nuclear explosives, is a difficult challenge pursued by non-proliferation, anti-terrorism, and nuclear security programs worldwide. Interrogation with intense fast-neutron pulses is a promising method to characterize concealed nuclear material rapidly but is limited by suitable source availability and proven instrumentation. In this study we have pioneered a demonstration of such an interrogation method using a high-intensity, short-pulse, laser-driven neutron source that offers potential benefits compared to conventional neutron sources.
View Article and Find Full Text PDFNat Commun
January 2025
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Energy efficiency in computation is ultimately limited by noise, with quantum limits setting the fundamental noise floor. Analog physical neural networks hold promise for improved energy efficiency compared to digital electronic neural networks. However, they are typically operated in a relatively high-power regime so that the signal-to-noise ratio (SNR) is large (>10), and the noise can be treated as a perturbation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
We measure the high-intensity laser propagation throughout meter-scale, channel-guided laser-plasma accelerators by adjusting the length of the plasma channel on a shot-by-shot basis, showing high-quality guiding of 500 TW laser pulses over 30 cm in a hydrogen plasma of density n_{0}≈1×10^{17} cm^{-3}. We observed transverse energy transport of higher-order modes in the first ≈12 cm of the plasma channel, followed by quasimatched propagation, and the gradual, dark-current-free depletion of laser energy to the wake. We quantify the laser-to-wake transfer efficiency limitations of currently available petawatt-class lasers and demonstrate via simulation how control over the laser mode can significantly improve beam parameters.
View Article and Find Full Text PDFNat Commun
January 2025
TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.
Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!