Collaborative Oscillatory Fracture.

Phys Rev Lett

Departamento de Física Universidad de Santiago de Chile, Avenida Ecuador 3493, 9170124 Estación Central, Santiago, Chile.

Published: May 2020

We report a new oscillatory propagation of cracks in thin films where three cracks interact mediated by two delamination fronts. Experimental observations indicate that delamination fronts joining the middle crack to the lateral crack tips swap contact periodically with the crack tip of the middle crack. A model based on a variational approach analytically predicts the condition of propagation and geometrical features of three parallel cracks. The stability conditions and oscillating propagation are found numerically and the predictions are in favorable agreement with experiments. We found that the physical mechanism selecting the wavelength structure is a relaxation process in which the middle crack produces a regular oscillatory path.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.174102DOI Listing

Publication Analysis

Top Keywords

middle crack
12
delamination fronts
8
crack
5
collaborative oscillatory
4
oscillatory fracture
4
fracture report
4
report oscillatory
4
oscillatory propagation
4
propagation cracks
4
cracks thin
4

Similar Publications

In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.

View Article and Find Full Text PDF

The mechanical properties of jointed rock bodies are important in guiding engineering design and construction. Using the particle flow software PFC2D, we conducted direct shear test simulations on joints with various inclinations and five different roughness levels to examine the models' crack extension penetration paths, damage modes, and strength characteristics. The findings indicate that the direction of the joint influences the pattern of the rock crack and its penetration route.

View Article and Find Full Text PDF

Assessment of complications in adjacent natural teeth compared to contralateral teeth in single posterior implant cases.

Sci Rep

January 2025

Department of Oral Rehabilitation, the Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.

Osseointegrated dental implants represent a successful treatment modality for partial and complete edentulism. However, concerns persist regarding their impact on adjacent natural teeth. Conflicting literature exists regarding complications such as caries, mobility, and fractures in neighboring teeth, with few studies comparing these effects with those observed in contralateral natural teeth.

View Article and Find Full Text PDF

Differences in Rejuvenation Mechanisms and Physical Properties of Aged Styrene-Butadiene-Styrene (SBS)-Modified Bitumen by Mono-Epoxy and Di-Epoxy Compounds.

Polymers (Basel)

December 2024

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, South 2nd Ring Road Middle Section, Xi'an 710064, China.

Studying the mechanisms and effects of rejuvenators on SBS-modified bitumen is crucial for repairing degraded SBS and recycling aged SBS-modified bitumen (ASMB), thereby contributing to the sustainable development of bitumen pavements. This research examines the roles of mono-epoxy Alkyl (C12-C14) glycidyl ether (AGE) and di-epoxy 1,6-Hexanediol diglycidyl ether (HDE) under the catalysis of N,N-dimethyl benzyl amine (BDMA) in repairing degraded SBS chains. Aromatic oil (ORSMB)-, AGE-aromatic oil (ARSMB)-, and HDE-aromatic oil (HRSMB)-rejuvenated bitumen are analyzed for their chemical structures, physical properties, and rheological properties.

View Article and Find Full Text PDF

Research on the Stress Characteristics of Reuse of Semi-Rigid Base.

Sensors (Basel)

December 2024

School of Highway, Chang'an University, Middle Section of South Erhuan Road, Xi'an 710064, China.

Semi-rigid bases are widely used in road construction due to their excellent properties, high rigidity, and frost resistance, and they have been in service for many years. However, as the service life increases, the maintenance demands also grow, with traditional maintenance methods still being the primary approach. Based on a typical case using ground-penetrating radar (GPR) technology, this study explores the issue of cracks in semi-rigid bases and their impact on overlay layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!