Sensitized triplet-triplet annihilation (sTTA) is the most promising mechanism for pooling the energy of two visible photons, but its applications in solution were so far limited to organic solvents, with a current maximum of the excited-singlet state energy of 3.6 eV. By combining tailor-made iridium complexes with naphthalenes, we demonstrate blue-light driven upconversion in water with unprecedented singlet-state energies approaching 4 eV. The annihilators have outstanding excited-state reactivities enabling challenging photoreductions driven by sTTA. Specifically, we found that an aryl-bromide bond activation can be achieved with blue photons, and we obtained full conversion for the very energy-demanding decomposition of a persistent ammonium compound as typical water pollutant, not only with a cw laser but also with an LED light source. These results provide the first proof-of-concept for the usage of low-power light sources for challenging reactions employing blue-to-UV upconversion in water and pave the way for the further development of sustainable light-harvesting applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c02835DOI Listing

Publication Analysis

Top Keywords

upconversion water
12
light generation
4
generation challenging
4
challenging photoreactions
4
photoreactions enabled
4
enabled upconversion
4
water
4
water sensitized
4
sensitized triplet-triplet
4
triplet-triplet annihilation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!