AI Article Synopsis

  • Mast cells (MCs) help defend against pathogens through receptors that detect harmful molecules, and this study investigates the role of defensin BD-2 in enhancing MC responses.
  • Findings show that BD-2 boosts the expression of receptors essential for viral detection in rat peritoneal MCs, suggesting it enhances their ability to respond to infections.
  • The study concludes that BD-2 may significantly improve MC activity in inflammation and immune responses, particularly in allergic reactions and during infections.

Article Abstract

Mast cells (MCs) are engaged in the processes of host defense, primarily the presence of receptors responsible for the detection of pathogen-associated molecular patterns (PAMPs). Since BDs are exclusively host defense molecules, and MCs can elicit the antimicrobial response, this study is aimed at determining whether BDs might be involved in MC pathogen defense. We found that defensin BD-2 significantly augments the mRNA and protein expression of Tolllike receptors (TLRs) and retinoic acid-inducible gene-I-like receptor (RLR) essential for the detection of viral molecules, i.e., TLR3, TLR7, TLR9, and RIG-I in mature tissue rat peritoneal MCs (PMCs). We established that BD-2 might stimulate PMCs to release proinflammatory and immunoregulatory mediators and to induce a migratory response. Presented data on IgE-coated PMC upon BD-2 treatment suggest that in the case of allergies, there is an enhanced MC immune response and cell influx to the site of the ongoing infection. In conclusion, our data highlight that BD-2 might strongly influence MC features and activity, mainly by strengthening their role in the inflammatory mechanisms and controlling the activity of cells participating in antimicrobial processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201483PMC
http://dx.doi.org/10.1155/2020/5230172DOI Listing

Publication Analysis

Top Keywords

host defense
8
-defensin strengthens
4
strengthens antimicrobial
4
antimicrobial peritoneal
4
peritoneal mast
4
mast cell
4
response
4
cell response
4
response mast
4
mast cells
4

Similar Publications

Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.

View Article and Find Full Text PDF

Cyclic oligonucleotide-based antiviral signaling systems (CBASS) are bacterial anti-phage defense operons that use nucleotide signals to control immune activation. Here we biochemically screen 57 diverse and phages for the ability to disrupt CBASS immunity and discover anti-CBASS 4 (Acb4) from the phage SPO1 as the founding member of a large family of >1,300 immune evasion proteins. A 2.

View Article and Find Full Text PDF

Prokaryote evolution is driven in large part by the incessant arms race with viruses. Genomic investments in antivirus defense can be coarsely classified into two categories, immune systems that abrogate virus reproduction resulting in clearance, and altruistic programmed cell death (PCD) systems. Prokaryotic defense systems are enormously diverse, as revealed by an avalanche of recent discoveries, but the basic ecological determinants of defense strategy remain poorly understood.

View Article and Find Full Text PDF

Decoding the genetic basis of secretory tissues in plants.

Hortic Res

January 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China.

Although plant secretory tissues play important roles in host defense against herbivores and pathogens and the attraction of insect pollinators, their genetic control remains elusive. Here, it is focused that current progress has been made in the genetic regulatory mechanisms underpinning secretory tissue development in land plants. C1HDZ transcription factors (TFs) are found to play crucial roles in the regulation of internal secretory tissues in liverworts and as well as external secretory tissues in peach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!