AdipoRon (AdipoR) is the first synthetic molecule acting as a selective and potent adiponectin receptor agonist. Recently, the possible pharmacological use of AdipoR in different pathological conditions has been addressed. Interestingly, initial evidence suggests that AdipoR may have anticancer properties in different preclinical models, such as pancreatic and ovarian cancer. To our knowledge, so far no research has been directed at determining the impact of AdipoR on osteosarcoma, the most aggressive and metastatic bone malignancy occurring in childhood and adolescence age. Here, we investigate the possible antitumor effects of AdipoR in osteosarcoma cell lines. MTT and cell growth curve assays clearly indicate that AdipoR inhibits, at different extents, proliferation in both U2OS and Saos-2 osteosarcoma cell lines, the latter being more sensitive. Moreover, flow cytometry-based assays point out a significant G0/G1 phase accumulation and a contemporary S phase decrease in response to AdipoR. Consistent with the different sensitivity, a strong subG1 appearance in Saos-2 after 48 and 72 hours of treatment is also observed. The investigation of the molecular mechanisms highlights a common and initial ERK1/2 activation in response to AdipoR in both Saos-2 and U2OS cells. Interestingly, a simultaneous and dramatic downregulation of p70S6K phosphorylation, one of the main targets of mTORC1 pathway, has also been observed in AdipoR-treated Saos-2, but not in U2OS cells. Importantly, a strengthening of AdipoR-induced effects was reported upon everolimus-mediated mTORC1 perturbation in U2OS cells. In conclusion, our findings provide initial evidence of AdipoR as an anticancer molecule differently affecting various signaling pathways involved in cell cycle and cell death in osteosarcoma cells and encourage the design of future studies to further understand its pattern of activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204133 | PMC |
http://dx.doi.org/10.1155/2020/7262479 | DOI Listing |
Biomedicines
January 2025
Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Clinical Sciences and Translational Medicine, University of Rome 'Tor Vergata', Via Montpellier 1, 00133 Rome, Italy.
Cancer cells demonstrate remarkable resilience by adapting to oxidative stress and undergoing metabolic reprogramming, making oxidative stress a critical target for cancer therapy. This study explores, for the first time, the redox-dependent anticancer effects of Polydatin (PD), a glucoside derivative of resveratrol, on the human Osteosarcoma (OS) cells SAOS-2 and U2OS. Using cell-based biochemical assays, we found that cytotoxic doses of PD (100-200 µM) promote ROS production, deplete glutathione (GSH), and elevate levels of both total iron and intracellular malondialdehyde (MDA), which are key markers of ferroptosis.
View Article and Find Full Text PDFData Brief
February 2025
Cell Death, Lysosomes and Artificial Intelligence Group, Department of Experimental Medical Science, Faculty of Medicine, Lund University, BMC D10, 22184 Lund, Sweden.
Many forms of bioimage analysis involve the detection of objects and their outlines. In the context of microscopy-based high-throughput drug and genomic screening and even in smaller scale microscopy experiments, the objects that most often need to be detected are cells. In order to develop and benchmark algorithms and neural networks that can perform this task, high-quality datasets with annotated cell outlines are needed.
View Article and Find Full Text PDFCommun Biol
January 2025
Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
RNA helicase DEAD-box helicase 1 (DDX1) forms a complex with the RNA ligase 2´,3´-cyclic phosphate and 5´-OH ligase (RTCB), which plays a vital role in non-spliceosomal splicing of tRNA and X-box binding protein 1 (XBP1) mRNA. However, the importance of DDX1 in non-spliceosomal splicing has not been clarified. To analyze the functions of DDX1 in mammalian cells, we generated DDX1 cKO cells from the polyploid human U2OS cell line and found that splicing of intron-containing tRNAs was significantly disturbed in DDX1-deficient cells, whereas endoplasmic reticulum (ER) stress-induced splicing of XBP1 mRNA was unaffected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!