This study was conducted to set up a new reference line for municipal solid waste quantification and characterization in the least urbanized cities of a developing nation. A survey was run to collect baseline data from 60 new municipalities of Nepal. The study covered a sample size of 3300 households, 600 institutions and 600 commercial establishments in those municipalities. The municipalities were further stratified according to geographical location, the degree of urbanization, household expenditure and population size to assess the influence on waste generation. The results indicated that the average per capita household waste generation is 115 g day while the average total municipal waste generation was estimated to be 180 g day per capita.The study also revealed that size of municipal population, geographic location, household expenditure and degree of urbanization were found to have a significant influence on the unit waste generation. The larger the size of municipal population the higher the per capita household waste generation, degree of urbanization and per capita waste production. Increasing household expenditure revealed an increase in the unit waste generation. The waste categories included organic waste, plastics, paper and paper products, textiles, rubber and leather, metals, glass, and others. The results indicated that organic waste dominated the characterization (62%), followed by plastics (12%) and paper/paper products (11%).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X20922588 | DOI Listing |
Environ Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China.
The traditional treatment of toxic and refractory copper(II)-ethylenediaminetetraacetic acid chelate (Cu(II)-EDTA) in electroless effluents often generates hazardous waste and secondary nitrogen-containing pollutants without maximizing the resource recovery. This study demonstrates a facile strategy to simultaneously recover Cu and EDTA ligands from Cu(II)-EDTA electroless effluent with commercially available metallic Cu and formaldehyde. In this strategy, metallic Cu is used to activate formaldehyde, a prevalent yet often overlooked cocontaminant in Cu(II)-EDTA effluents, to produce highly reductive hydrogen radical (H), which in situ decomplex Cu(II)-EDTA, reduces the central Cu(II) into metallic Cu, and release EDTA ligand.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran.
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.
View Article and Find Full Text PDFChemistry
January 2025
Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, RUSSIAN FEDERATION.
Palladium catalysts form a cornerstone of modern chemistry with upmost scientific and industrial impact. Bulk palladium metal itself is chemically inert, and a sequence of chemical transformations has to be utilized to convert the metal into Pd pre-catalyst covered by ligands. However, the "cocktail" of catalysis concept discovered recently has shown that Pd systems can efficiently operate in catalysis without the necessity of a complicated and expensive pre-installed ligand environment.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
Closed-loop transformation of raw materials into high-value-added products is highly desired for the sustainable development of the society but is seldom achieved. Here, a low-cost, solvent-free and "zero-waste" mechanochemical protocol is reported for the large-scale preparation of cathode materials for sodium-ion batteries (SIBs). This process ensures full utilization of raw materials, effectively reduces water consumption, and simplifies the operating process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!