Ferroelectric hafnium zirconium oxide holds great promise for a broad spectrum of complementary metal-oxide-semiconductor (CMOS) compatible and scaled microelectronic applications, including memory, low-voltage transistors, and infrared sensors, among others. An outstanding challenge hindering the implementation of this material is polarization instability during field cycling. In this study, the nanoscale phenomena contributing to both polarization fatigue and wake-up are reported. Using synchrotron X-ray diffraction, the conversion of non-polar tetragonal and polar orthorhombic phases to a non-polar monoclinic phase while field cycling devices comprising noble metal contacts is observed. This phase exchange accompanies a diminishing ferroelectric remanent polarization and provides device-scale crystallographic evidence of phase exchange leading to ferroelectric fatigue in these structures. A reduction in the full width at half-maximum of the superimposed tetragonal (101) and orthorhombic (111) diffraction reflections is observed to accompany wake-up in structures comprising tantalum nitride and tungsten electrodes. Combined with polarization and relative permittivity measurements, the observed peak narrowing and a shift in position to lower angles is attributed, in part, to a phase exchange of the non-polar tetragonal to the polar orthorhombic phase during wake-up. These results provide insight into the role of electrodes in the performance of hafnium oxide-based ferroelectrics and mechanisms driving wake-up and fatigue, and demonstrate a non-destructive means to characterize the phase changes accompanying polarization instabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c03570DOI Listing

Publication Analysis

Top Keywords

phase exchange
12
wake-up fatigue
8
ferroelectric hafnium
8
hafnium zirconium
8
zirconium oxide
8
field cycling
8
non-polar tetragonal
8
tetragonal polar
8
polar orthorhombic
8
phase
6

Similar Publications

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.

View Article and Find Full Text PDF

Cellulose Acetate Butyrate-Based In Situ Gel Comprising Doxycycline Hyclate and Metronidazole.

Polymers (Basel)

December 2024

Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.

Cellulose acetate butyrate is a biodegradable cellulose ester bioplastic produced from plentiful natural plant-based resources. Solvent-exchange-induced in situ gels are particularly promising for periodontitis therapy, as this dosage form allows for the direct delivery of high concentrations of antimicrobial agents to the localized periodontal pocket. This study developed an in situ gel for periodontitis treatment, incorporating a combination of metronidazole and doxycycline hyclate, with cellulose acetate butyrate serving as the matrix-forming agent.

View Article and Find Full Text PDF

-succinimidyl-[F]fluorobenzoate ([F]SFB) is commonly prepared through a three-step procedure starting from [F]fluoride ion. A number of methods for the single-step radiosynthesis of [F]SFB have been introduced recently, including the radiofluorination of diaryliodonium salts and the Cu-mediated F-fluorination of pinacol aryl boronates and aryl tributyl stannanes, but they still have the drawbacks of lengthy product purification procedures. In the present work, two approaches for the direct labeling of [F]SFB from diaryliodonium (DAI) salt () and pinacol aryl boronate () are evaluated, with a major focus on developing a fast and simple SPE-based purification procedure.

View Article and Find Full Text PDF

Review on Gallium in Coal and Coal Waste Materials: Exploring Strategies for Hydrometallurgical Metal Recovery.

Molecules

December 2024

Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.

View Article and Find Full Text PDF

Multi-Exoskeleton Performance Evaluation: Integrated Muscle Energy Indices to Determine the Quality and Quantity of Assistance.

Bioengineering (Basel)

December 2024

Department of Advanced Robotics (ADVR), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy.

The assessment of realistic work tasks is a critical aspect of introducing exoskeletons to work environments. However, as the experimental task's complexity increases, the analysis of muscle activity becomes increasingly challenging. Thus, it is essential to use metrics that adequately represent the physical human-exoskeleton interaction (pHEI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!