Several prognostic gene signatures have been developed to predict the clinical outcome in patients with multiple myeloma (MM). The most salient disadvantage of the previous signatures is their non-reproducibility in external datasets. Given the disadvantages and the superiority of RNA sequencing over microarrays in transcriptome profiling to produce more reliable outputs, we sought to develop a reproducible RNA sequencing-based prognostic gene signature for MM. Genes significantly associated with survival were detected in The Cancer Genome Atlas (TCGA) MM RNA sequencing dataset (MMRF-CoMMpass) (n = 412) through a strict pipeline containing four rigid filters. The reproducibility of the selected genes was checked in an independent dataset (GSE24080), containing 559 newly diagnosed patients with MM. The RNA sequencing-based prognostic signature was reconstructed based on the final genes in the training dataset (MMRF-CoMMpass) and externally validated in five independent datasets (i.e. GSE2658, GSE13624, GSE9782, GSE6477 and GSE57317), containing 1461 MM cases. The RNA sequencing-based signature was reconstructed using finally five reproducible genes: CCT2, CKS1B, PRKDC, NONO and UBE2A. This signature was able to robustly discriminate between low- and high-risk patients in both training and validation datasets (Ps ≤ 0·001). Our signature was also independent of and more powerful than the routine MM prognostic factors (i.e. β2-microglobulin, albumin, age and sex) (Ps ≤ 0·01). Treatment regimens had no effect on RNA sequencing-based signature insofar as this signature succeeded in predicting the clinical outcome in various treatment groups (Ps ≤ 0·001).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bjh.16744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!