The multiple physiological effects of the indoleamine melatonin, are mediated primarily by its two G protein-coupled MT and MT receptors. Treatment with histone deacetylase (HDAC) inhibitors, including valproic acid (VPA) and trichostatin A, upregulates melatonin receptors in cultured cells and the rat brain. VPA increases histone H3 acetylation of the MT gene promoter in rat C6 glioma cells, indicating that this epigenetic mechanism is involved in upregulation of MT expression. Since HDAC inhibitors can alter DNA methylation, the possible involvement of this other epigenetic mechanism, in the regulation of MT expression, was examined. RT-qPCR and western blotting studies confirmed that treatment with the DNA demethylating agent, 5-azacytidine (AZA; 10 or 20 µM) for 24 or 48 h, suppressed DNA methyltransferase 1 mRNA and protein expression in C6 cells. Subsequent treatment with AZA (1-25 µM) for 24 h, revealed a significant concentration-dependent upregulation of MT mRNA expression. Moreover, a combination of 5 µM AZA plus 3 mM VPA caused a synergistic upregulation of the MT receptor, which exceeded the sum of the independent effects of these drugs. These results show that DNA methylation plays a role in the regulation of the MT receptor, consistent with the established effects of this major epigenetic mechanism on gene transcription. Combinatorial epigenetic regulation of melatonin receptor expression could provide novel strategies for enhancing the oncostatic, neuroprotective and other therapeutic benefits of this pleiotropic indoleamine and its receptor agonists.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-020-05482-8DOI Listing

Publication Analysis

Top Keywords

epigenetic mechanism
12
upregulates melatonin
8
melatonin receptor
8
receptor expression
8
rat glioma
8
glioma cells
8
hdac inhibitors
8
dna methylation
8
expression
6
receptor
5

Similar Publications

An insight on the additive impact of type 2 diabetes mellitus and nonalcoholic fatty liver disease on cardiovascular consequences.

Mol Biol Rep

January 2025

Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.

Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.

View Article and Find Full Text PDF

Gestational trophoblastic disease (GTD) describes a group of rare benign and cancerous lesions originating from the trophoblast cells of the placenta. These neoplasms are unconventional entities, being one of the few instances in which cancer develops from the cells of another organism, the foetus. Although this condition was first described over 100 years ago, the specific genetic and non-genetic drivers of this disease remain unknown to this day.

View Article and Find Full Text PDF

Oxidative stress and dysregulated long noncoding RNAs in the pathogenesis of Parkinson's disease.

Biol Res

January 2025

Department of Neurology, Fourth Affiliated Hospital of China Medical University, No.4 Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.

Parkinson's disease (PD) is a progressive age-related neurodegenerative disease whose annual incidence is increasing as populations continue to age. Although its pathogenesis has not been fully elucidated, oxidative stress has been shown to play an important role in promoting the occurrence and development of the disease. Long noncoding RNAs (lncRNAs), which are more than 200 nucleotides in length, are also involved in the pathogenesis of PD at the transcriptional level via epigenetic regulation, or at the post-transcriptional level by participating in physiological processes, including aggregation of the α-synuclein, mitochondrial dysfunction, oxidative stress, calcium stabilization, and neuroinflammation.

View Article and Find Full Text PDF

Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.

View Article and Find Full Text PDF

Histone Modifications and DNA Methylation in Psoriasis: A Cellular Perspective.

Clin Rev Allergy Immunol

January 2025

Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.

In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!