Purpose Of Review: Muscular dystrophies are a heterogeneous group of inherited muscular disorders characterized by progressive muscle weakness and in many cases cardiac and respiratory muscle involvement. Historically, these disorders are considered incurable with grave prognoses. The genes responsible for most muscular dystrophies are known, and early diagnosis is achievable with proper clinical recognition and advanced genetic testing. This article reviews recent advances in the development of novel treatments and biomarkers in the realm of muscular dystrophies commonly encountered in pediatric population.
Recent Findings: The therapeutic landscape of muscular dystrophies has changed with the development of new approved treatments for Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy. This has paved the way for the development of novel therapeutic strategies for not only DMD but also other muscular dystrophies. This article reviews recent advances in the development of novel treatments and biomarkers in the realm of muscular dystrophies commonly encountered in pediatric population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11910-020-01034-6 | DOI Listing |
Andes Pediatr
October 2024
Departamento de Neuropediatría, Hospital Fundación Alcorcón, Madrid, España.
Unlabelled: Congenital myotonic dystrophy type 1 (DM1) is a rare entity that can pose a diagnostic challenge, especially if other processes such as prematurity coexist.
Objective: to describe the typical presentation of congenital DM1 and thus increase diagnostic suspicion.
Clinical Case: A 29-week preterm female newborn who required non-invasive mechanical ventilation until 41 weeks postmenstrual age; she presented with apnea requiring manual ventilation with a self-inflating bag and cardiac massage.
Nihon Yakurigaku Zasshi
January 2025
Department of Neurology, Tohoku University School of Medicine.
Distal myopathy with rimmed vacuoles (GNE myopathy) is an incurable disease that develops after the late teens, progresses slowly, and has no effective treatment. It is inherited in an autosomal recessive manner, and the number of patients in Japan is estimated to be around 400. The causative gene was revealed to be GNE, the rate-limiting enzyme in the sialic acid biosynthesis pathway, and non-clinical studies demonstrated the effectiveness of sialic acid.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.
View Article and Find Full Text PDFSci Rep
January 2025
Sarepta Therapeutics, Inc., Cambridge, MA, USA.
Delandistrogene moxeparvovec is an rAAVrh74 vector-based gene transfer therapy that delivers a transgene encoding delandistrogene moxeparvovec micro-dystrophin, an engineered, functional form of dystrophin shown to stabilize or slow disease progression in DMD. It is approved in the US and in other select countries. Two serious adverse event cases of immune-mediated myositis (IMM) were reported in the phase Ib ENDEAVOR trial (NCT04626674).
View Article and Find Full Text PDFDystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!