Basal cell carcinoma (BCC) represents the most commonly diagnosed human cancer among persons of European ancestry with etiology mainly attributed to sun-exposure. In this study we investigated mutations in coding and flanking regions of PTCH1 and TP53 and noncoding alterations in the TERT and DPH3 promoters in 191 BCC tumors. In addition, we measured CpG methylation within the TERT hypermethylated oncological region (THOR) and transcription levels of the reverse transcriptase subunit. We observed mutations in PTCH1 in 58.6% and TP53 in 31.4% of the tumors. Noncoding mutations in TERT and DPH3 promoters were detected in 59.2% and 38.2% of the tumors, respectively. We observed a statistically significant co-occurrence of mutations at the four investigated loci. While PTCH1 mutations tended to associate with decreased patient age at diagnosis; TP53 mutations were associated with light skin color and increased number of nevi; TERT and DPH3 promoter with history of cutaneous neoplasms in BCC patients. Increased reverse transcriptase subunit expression was observed in tumors with TERT promoter mutations and not with THOR methylation. Our study signifies, in addition to the protein altering mutations in the PTCH1 and TP53 genes, the importance of noncoding mutations in BCC, particularly functional alterations in the TERT promoter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224188PMC
http://dx.doi.org/10.1038/s41598-020-65057-2DOI Listing

Publication Analysis

Top Keywords

tert dph3
12
mutations
10
basal cell
8
cell carcinoma
8
ptch1 tp53
8
alterations tert
8
dph3 promoters
8
reverse transcriptase
8
transcriptase subunit
8
mutations ptch1
8

Similar Publications

Basal cell carcinoma (BCC) of the skin is the most common cancer in humans, characterized by the highest mutation rate among cancers, and is mostly driven by mutations in genes involved in the hedgehog pathway. To date, almost all BCC genetic studies have focused exclusively on protein-coding sequences; therefore, the impact of noncoding variants on the BCC genome is unrecognized. In this study, with the use of whole-exome sequencing of 27 tumor/normal pairs of BCC samples, we performed an analysis of somatic mutations in both protein-coding sequences and gene-associated noncoding regions, including 5'UTRs, 3'UTRs, and exon-adjacent intron sequences.

View Article and Find Full Text PDF

A number of genes have been implicated in the pathogenesis of BCC in addition to the Hedgehog pathway, which is known to drive the initiation of this tumour. We performed in-depth analysis of 13 BCC-related genes (CSMD1, CSMD2, DPH3 promoter, PTCH1, SMO, GLI1, NOTCH1, NOTCH2, TP53, ITIH2, DPP10, STEAP4, TERT promoter) in 57 BCC lesions (26 superficial and 31 nodular) from 55 patients and their corresponding blood samples. PTCH1 and TP53 mutations were found in 71.

View Article and Find Full Text PDF

Basal cell carcinoma (BCC) represents the most commonly diagnosed human cancer among persons of European ancestry with etiology mainly attributed to sun-exposure. In this study we investigated mutations in coding and flanking regions of PTCH1 and TP53 and noncoding alterations in the TERT and DPH3 promoters in 191 BCC tumors. In addition, we measured CpG methylation within the TERT hypermethylated oncological region (THOR) and transcription levels of the reverse transcriptase subunit.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) may serve as a surrogate to tissue biopsy for noninvasive identification of mutations across multiple genetic loci and for disease monitoring in melanoma. In this study, we compared the mutation profiles of tumor biopsies and plasma ctDNA from metastatic melanoma patients using custom sequencing panels targeting 30 melanoma-associated genes. Somatic mutations were identified in 20 of 24 melanoma biopsies, and 16 of 20 (70%) matched-patient plasmas had detectable ctDNA.

View Article and Find Full Text PDF

Understanding the Molecular Genetics of Basal Cell Carcinoma.

Int J Mol Sci

November 2017

Department of Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy.

Basal cell carcinoma (BCC) is the most common human cancer and represents a growing public health care problem. Several tumor suppressor genes and proto-oncogenes have been implicated in BCC pathogenesis, including the key components of the Hedgehog pathway, 1 and , the 53 tumor suppressor, and members of the proto-oncogene family. Aberrant activation of the Hedgehog pathway represents the molecular driver in basal cell carcinoma pathogenesis, with the majority of BCCs carrying somatic point mutations, mainly ultraviolet (UV)-induced, and/or copy-loss of heterozygosis in the 1 gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!