A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of Breast Cancer Cells Using the Integration of High-Frequency Single-Beam Acoustic Tweezers and Convolutional Neural Networks. | LitMetric

Single-beam acoustic tweezers (SBAT) is a widely used trapping technique to manipulate microscopic particles or cells. Recently, the characterization of a single cancer cell using high-frequency (>30 MHz) SBAT has been reported to determine its invasiveness and metastatic potential. Investigation of cell elasticity and invasiveness is based on the deformability of cells under SBAT's radiation forces, and in general, more physically deformed cells exhibit higher levels of invasiveness and therefore higher metastatic potential. However, previous imaging analysis to determine substantial differences in cell deformation, where the SBAT is turned ON or OFF, relies on the subjective observation that may vary and requires follow-up evaluations from experts. In this study, we propose an automatic and reliable cancer cell classification method based on SBAT and a convolutional neural network (CNN), which provides objective and accurate quantitative measurement results. We used a custom-designed 50 MHz SBAT transducer to obtain a series of images of deformed human breast cancer cells. CNN-based classification methods with data augmentation applied to collected images determined and validated the metastatic potential of cancer cells. As a result, with the selected optimizers, precision, and recall of the model were found to be greater than 0.95, which highly validates the classification performance of our integrated method. CNN-guided cancer cell deformation analysis using SBAT may be a promising alternative to current histological image analysis, and this pretrained model will significantly reduce the evaluation time for a larger population of cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7281163PMC
http://dx.doi.org/10.3390/cancers12051212DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
cancer cell
12
metastatic potential
12
breast cancer
8
single-beam acoustic
8
acoustic tweezers
8
convolutional neural
8
mhz sbat
8
cell deformation
8
cells
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!