Systematic investigation of filtrates and filter residues resulting from a 24 h treatment of metakaolin in different alkaline solutions were performed. On filtered metakaolin particles, inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements reveal an enrichment of iron and titanium, which suggests an inhomogeneous distribution of these cations. Since the SiO/AlO ratio remains constant in all filter residues examined, the dissolution of the Si and Al monomers is congruent. Structural differences, identified by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) as a consequence of alkali uptake, influence the X-ray scattering contribution of metakaolin, and thus quantifications with the partial or no known crystal structure (PONKCS) method. This leads to deviations between the degree of reaction calculated from Si and Al solubility from filtrate and that quantified by quantitative powder X-ray diffraction (QPXRD) using the filter residue. Nevertheless, the described changes do not cause a shift in the X-ray amorphous hump in case of congruent dissolution, and thus allow the quantification of the metakaolin before and after dissolution with the same hkl-phase model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287791PMC
http://dx.doi.org/10.3390/ma13102214DOI Listing

Publication Analysis

Top Keywords

metakaolin alkaline
8
filter residues
8
reactivity metakaolin
4
alkaline environment
4
environment correlation
4
dissolution
4
correlation dissolution
4
dissolution experiments
4
experiments xrd
4
xrd quantifications
4

Similar Publications

Alkali activated materials (AAMs) offer significant advantages over traditional materials like Portland cement, but require the use of strong alkaline solutions, which can have negative environmental impacts. This study investigates the synthesis of AAMs using metakaolin and wollastonite, aiming to reduce environmental impact by eliminating sodium silicate and using only sodium hydroxide as an activator. The hypothesis is that wollastonite can provide the necessary silicon for the reaction, with calcium from wollastonite potentially balancing the negative charges usually countered by sodium in the alkaline solution.

View Article and Find Full Text PDF

Synthesis and Characterization of Novel Hybrid Wollastonite-Metakaolin-Based Geopolymers.

Materials (Basel)

September 2024

Department of Physics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.

Over the past few decades, researchers have focused on developing new production methods for geopolymers to improve their properties for use in multiple applications as a functional material. This study introduces a new geopolymer system based on wollastonite and metakaolin as precursors. The role of wollastonite was also explored alongside metakaolin in geopolymers.

View Article and Find Full Text PDF

Comparative Study of the Structural, Microstructural, and Mechanical Properties of Geopolymer Pastes Obtained from Ready-to-Use Metakaolin-Quicklime Powders and Classic Geopolymers.

Materials (Basel)

August 2024

Ecole Normale Supérieure de Rabat, Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Université Mohammed V, Avenue Mohamed Bel Hassan El Ouazzani, Takaddoum-Rabat BP 5118, Morocco.

This study compares the structural, microstructural, thermal, and mechanical properties of geopolymer pastes (GPs) created through traditional methods and those derived from ready-to-use powders for geopolymer (RUPG) materials. The metakaolin (MK) precursor was activated using a sodium silicate solution or CaO and MOH (where M is Na or K). Various ratios of precursor/activator and NaSiO or CaO/MOH were tested to determine the optimal combination.

View Article and Find Full Text PDF

The increasing global demand for cement significantly impacts greenhouse gas emissions and resource consumption, necessitating sustainable alternatives. This study investigates fresh geopolymer (GP) pastes incorporating 20 wt.% of five industrial wastes-suction dust, red mud from alumina production, electro-filter dust, and extraction sludges from food supplement production and from partially stabilized industrial waste-as potential replacements for traditional cement.

View Article and Find Full Text PDF

Ex Situ Stabilization/Solidification Approaches of Marine Sediments Using Green Cement Admixtures.

Materials (Basel)

July 2024

Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona 4, 70125 Bari, Italy.

The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!