Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds.

Sci Total Environ

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China. Electronic address:

Published: July 2020

Redox transformations of organic contaminants by bacterial extracellular polymeric substances (EPS) and the associated electron transfer mechanisms are rarely reported. Here we show that a nitroaromatic compound (1,3-dinitrobenzene) can be readily reduced to 3-hydroxylaminonitrobenzene and 3-nitroaniline in aqueous suspension of common bacteria (E. coli or B. subtilis) or in aqueous dissolved EPS extracted from the bacteria. The loss ratio of 1,3-dinitrobenzene by E. coli was unaffected after knocking out the nfsA gene encoding nitroreductase, but was suppressed by removing EPS attached to cells. In contrast, the loss ratio was enhanced by adding aqueous dissolved EPS to E. coli or B. subtilis suspension. The residual 1,3-dinitrobenzene and products formed after reduction were only presented outside the bacterial cells. Thus, bacterial reduction of 1,3-dinitrobenzene was mediated by nonenzymatic extracellular reduction. This was further corroborated by the observation that the stoichiometric demand of electrons in 1,3-dinitrobenzene reduction was nearly equal to the quantity of electrons donated by bacterial cells in the electrochemical cell experiment. Inhibition on the reduction of 1,3-dinitrobenzene by chemical probes combined with fluorescence detection demonstrated that reducing sugars in EPS might act as electron donors, while cytochromes and some low-molecular weight molecules (flavins and quinones) were involved as electron transfer mediators. Linear relationships were observed between the reduction kinetics and the one-electron reduction potentials for a series of substituted dinitrobenzenes in the presence of bacterial cells or dissolved EPS. Their close linear regression slope values suggest that the extracellular matrix and the exfoliated EPS utilized the same reducing agents (likely hydroquinones and reduced flavins) as terminal electron donors to reduce NACs. These results reveal a previously unrecognized mechanism for nonenzymatic extracellular reduction of NACs by common bacteria. CAPSULE: The extracellular matrix of E. coli or B. subtilis supplies both electron donors and electron transfer mediators to efficiently reduce nitroaromatic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138291DOI Listing

Publication Analysis

Top Keywords

extracellular reduction
12
electron transfer
12
coli subtilis
12
dissolved eps
12
bacterial cells
12
electron donors
12
reduction
9
nitroaromatic compounds
8
common bacteria
8
aqueous dissolved
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!