Nitrogen removal from wastewater is an energy and chemical intensive process that is becoming increasingly more common around the world. To address the cost and complexity issues associated with biological nitrogen removal from wastewater, an alternative approach for achieving next generation nitrogen removal via partial nitrification, denitratation and anaerobic ammonia oxidation (PANDA) has been developed. The PANDA process relies on converting 50% of influent ammonia load to nitrate via aerobic ammonia (AerAOB) and nitrite oxidizing bacteria (NOB). The nitrate is reduced to nitrite (denitratation), followed by the removal of ammonia and nitrite by heterotrophic denitrifiers and anaerobic ammonia oxidizing biomass (AnAOB). Results from a pilot-scale sidestream PANDA demonstration at nitrogen loadings of 0.2-0.25 kg N/m-day illustrated that up to 80% ammonia removal could be achieved. Testing in the mainstream process at initial ammonia concentrations of ~25 mg N/L indicated that 90% removal of total inorganic nitrogen could be achieved and that nitrogen removal was ultimately dependent on operating factors including aeration time, supplemental carbon dosing, hydraulic retention time and nitrate concentrations. Results cumulatively indicated that there was inherent resiliency within the PANDA systems when responding to variable environmental and operational conditions. This is hypothesized to be due to the fact that nitrogen removal is due to the combined synergistic activity of AerAOB, NOB, heterotrophic denitrifiers and AnAOB. Accordingly, utilization of PANDA based treatment processes may allow Water Resource Recovery Facilities (WRRFs) to achieve more sustainable and cost effective nitrogen removal in sidestream and mainstream processes without the need for NOB suppression and complex operational controls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138283DOI Listing

Publication Analysis

Top Keywords

nitrogen removal
28
nitrogen
9
removal
9
water resource
8
resource recovery
8
recovery facilities
8
partial nitrification
8
ammonia
8
ammonia oxidation
8
oxidation panda
8

Similar Publications

Manganese(IV) (Mn(IV)) reduction coupled with ammonium (NH-N) oxidation (Mnammox) has been found to play a significant role in the nitrogen (N) cycle within natural ecosystems. However, research and application of the autotrophic NH-N removal process mediated by manganese oxides (MnOx) in wastewater treatment are currently limited. This study established autotrophic NH-N removal sludge reactors mediated by various MnOx types, including δ-MnO (δ-MSR), β-MnO (β-MSR), α-MnO (α-MSR), and natural Mn ore (MOSR), investigating their NH-N removal performances and mechanisms under different initial N loading and pH conditions.

View Article and Find Full Text PDF

Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances.

Bioresour Technol

January 2025

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China. Electronic address:

Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined.

View Article and Find Full Text PDF

Simultaneous degradation of roxithromycin and nitrogen removal by Acinetobacter pittii TR1: Performances, pathways, and mechanisms.

J Environ Manage

January 2025

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:

Pharmaceutical and aquaculture wastewater contains not only antibiotics but also high concentrations of nitrogen, but few studies have been conducted on bacteria that target this complex pollution for degradation. A novel heterotrophic nitrifying aerobic denitrifying (HN-AD) strain Acinetobacter pittii TR1 isolated from soil. When the C/N ratio was 20, the strain could degrade 50 mg/L roxithromycin (ROX) and the nitrogen removal rate was 96.

View Article and Find Full Text PDF

In Vivo visualization of microplastic degradability and intestinal functional responses in a plastivore insect.

J Hazard Mater

January 2025

School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:

The plastivore insect Tenebrio molitor demonstrates significant potential for the rapid biodegradation and bioremediation of micro(nano)plastics. However, real-time visualization of the digestive degradation and removal of microplastics (MPs) during intestinal transit, along with the associated in vivo intestinal functional responses, remains challenging. Here, we developed second near-infrared (NIR-II) window aggregated-induced emission (AIE) MPs of two sizes (29.

View Article and Find Full Text PDF

Spontaneous Catalytic Reaction of a Surfactant in the Interfacial Microenvironment of Colloidal Gold Nanoparticles.

J Am Chem Soc

January 2025

State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.

The performance of nanomaterials is significantly determined by the interfacial microenvironment, in which a surfactant plays an essential role as the adsorbent, but its involvement in the interfacial reaction is often overlooked. Here, it was discovered that citrate and ascorbic acid, the two primarily used surfactants for colloidal gold nanoparticles (Au NPs), can spontaneously undergo catalytic reaction with trace-level nitrogenous residue under ambient environment to form oxime, which is subsequently cleaved to generate CN or a compound containing the -CN group. Such a catalytic reaction shows wide universality in both reactants, including various carbonaceous and nitrogenous sources, and metal catalysts, including Au, Ag, Fe, Cu, Ni, Pt, and Pd NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!