Saccharina japonica is a brown macroalga that has been commercially cultivated in China for almost a century. As a natural raw material, it is widely used in the food and pharmaceutical industries, and it may potentially be useful for biofuel production. However, little is known about the genes involved in carbohydrate biosynthesis, and their regulation is less understood. In this study, the analysis of growth traits and alginate and mannitol contents suggested that sporophyte development could be divided into four stages. Accordingly, we performed transcriptome analysis of the S. japonica sporophyte. In total, 589 million clean reads were generated, and 4,514 novel genes were identified. Gene expression analysis revealed that 2,542 genes were differentially expressed. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that these genes were significantly enriched in "Carbon metabolism," "Photosynthesis," and "Photosynthesis-antenna proteins" pathways, which are important for metabolism of various carbohydrates during sporophyte development. Systematic analysis identified the genes encoding enzymes for the biosynthesis of cell wall carbohydrates (including alginate, fucoidan, and cellulose) and cytoplasm storage carbohydrates (mannitol, laminarin, and trehalose). Among them, some key genes associated with carbohydrate content were further identified based on detailed expression profiling, representing good candidates for further functional studies. This study provides a global view of the carbohydrate metabolism process and an important resource for functional genomics studies in S. japonica. The results obtained lay the basis for elucidating the molecular mechanism of carbohydrate biosynthesis and for genetic breeding of carbohydrates-related traits in kelp.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpy.13016DOI Listing

Publication Analysis

Top Keywords

carbohydrate biosynthesis
12
transcriptome analysis
8
genes
8
saccharina japonica
8
sporophyte development
8
analysis
6
carbohydrate
5
comparative transcriptome
4
analysis reveals
4
reveals candidate
4

Similar Publications

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

Objective: The process of glycolysis from blood collection to centrifugation impacts the diagnosis of gestational diabetes mellitus (GDM). However, the specific characteristics of the working environment in China and its influence on GDM diagnosis still need to be clarified.

Methods: Firstly, 15 pregnant women were recruited, and six specimens were collected from each in a fasting state.

View Article and Find Full Text PDF

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!