Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Improvements in the mass resolution of a mass spectrometer directly correlate to improvements in peak identification and quantification. Here, we describe a post-processing technique developed to increase the quality of mass spectra of strongly insulating samples in laser-pulsed atom probe microscopy. The technique leverages the self-similarity of atom probe mass spectra collected at different times during an experimental run to correct for electrostatic artifacts that present as systematic energy deficits. We demonstrate the method on fused silica (SiO) and neodymium-doped ceria (CeO) samples which highlight the improvements that can be made to the mass spectrum of strongly insulating samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536741 | PMC |
http://dx.doi.org/10.1016/j.ultramic.2020.112995 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!