Morphogenesis of multicellular systems is governed by precise spatiotemporal regulation of biochemical reactions and mechanical forces which together with environmental conditions determine the development of complex organisms. Current efforts in the field aim at decoding the system-level principles underlying the regulation of developmental processes. Toward this goal, optogenetics, the science of regulation of protein function with light, is emerging as a powerful new tool to quantitatively perturb protein function in vivo with unprecedented precision in space and time. In this review, we provide an overview of how optogenetics is helping to address system-level questions of multicellular morphogenesis and discuss future directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceb.2020.04.004 | DOI Listing |
Expert Rev Proteomics
January 2025
Biozentrum, University of Basel, Basel, Switzerland.
Introduction: Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of . We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques.
View Article and Find Full Text PDFCancer Discov
January 2025
Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
Deepening our understanding of neuro-cancer interactions can innovate brain tumor treatment. This mini review unfolds the most relevant and recent insights into the neural mechanisms contributing to brain tumor initiation, progression, and resistance, including synaptic connections between neurons and cancer cells, paracrine neuro-cancer signaling, and cancer cells' intrinsic neural properties. We explain the basic and clinical-translational relevance of these findings, identify unresolved questions and particularly interesting future research avenues, such as central nervous system neuro-immunooncology, and discuss the potential transferability to extracranial cancers.
View Article and Find Full Text PDFEarly embryo development features autonomous, maternally-driven cell divisions that self- organize the multicellular blastula or blastocyst tissue. Maternal control cedes to the zygote starting with the onset of widespread zygotic genome activation (ZGA), which is essential for subsequent cell fate determination and morphogenesis. Intriguingly, although the onset of ZGA is highly regulated at the level of an embryo, it can be non-homogenous and precisely patterned at the single-cell level.
View Article and Find Full Text PDFBioessays
December 2024
Division of Research Informatics, Beckman Research Institute of City of Hope 1500 E Duarte Rd, 91010, Duarte, California, USA.
Organismal death has long been considered the irreversible ending of an organism's integrated functioning as a whole. However, the persistence of functionality in organs, tissues, and cells postmortem, as seen in organ donation, raises questions about the mechanisms underlying this resilience. Recent research reveals that various factors, such as environmental conditions, metabolic activity, and inherent survival mechanisms, influence postmortem cellular functionality and transformation.
View Article and Find Full Text PDFElife
December 2024
Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
How cells regulate the size of their organelles remains a fundamental question in cell biology. Cilia, with their simple structure and surface localization, provide an ideal model for investigating organelle size control. However, most studies on cilia length regulation are primarily performed on several single-celled organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!