Objective: In patients with spinocerebellar ataxia type 1 or 2 (SCA1 or SCA2) and in their asymptomatic gene-positive relatives (AsyRs) we investigated the event-related desynchronization and synchronisation (ERD/ERS) on magnetoencephalographic signals to assess the changes occurring before manifest ataxia, by comparing the results obtained in AsyRs and in their gene-negative healthy relatives (HRs).

Methods: Twenty-four patients (12 SCA1, 12 SCA2), 24 AsyRs (13 SCA1, 11 SCA2) and 17 HRs performed a visually cued Go/No-go task. We evaluated the ERD/ERS in regions of interest corresponding to the frontal, central and parietal cortices.

Results: In the SCA patients the main findings were a loss of side predominance for alpha and beta ERD and significantly weakened beta ERS. In AsyRs the main finding was a significantly enhanced alpha ERD, namely in those who were approaching the estimated time of symptom onset.

Conclusions: In ataxic patients, the loss of ERD lateralisation and the significantly reduction of beta ERS suggest defective bilateral processes that are involved in ending the movement. In AsyRs, enhanced alpha ERD proposes the presence of preclinical marker closely preceding symptom onset.

Significance: Movement-related ERD/ERS can detect the defective sensorimotor integration in ataxic patients, and reveals possible compensatory mechanisms in their AsyRs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinph.2020.03.036DOI Listing

Publication Analysis

Top Keywords

sca1 sca2
12
spinocerebellar ataxia
8
beta ers
8
enhanced alpha
8
alpha erd
8
ataxic patients
8
asyrs
6
patients
5
cortical network
4
network dysfunction
4

Similar Publications

Diagnosis of hereditary ataxias: a real-world single center experience.

J Neurol

January 2025

Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.

Objective: This study aims to evaluate our experience in the diagnosis of hereditary ataxias (HAs), to analyze data from a real-world scenario.

Study Design: This is a retrospective, cross-sectional, descriptive study conducted at a single Italian adult neurogenetic outpatient clinic, in 147 patients affected by ataxia with a suspicion of hereditary forms, recruited from November 1999 to February 2024. A stepwise approach for molecular diagnostics was applied: targeted gene panel (TP) next-generation sequencing (NGS) and/or clinical exome sequencing (CES) were performed in the case of inconclusive first-line genetic testing, such as short tandem repeat expansions (TREs) testing for most common spinocerebellar ataxias (SCA1-3, 6-8,12,17, DRPLA), other forms [Fragile X-associated tremor/ataxia syndrome (FXTAS), Friedreich ataxia (FRDA) and mitochondrial DNA-related ataxia, RFC1-related ataxia/CANVAS] or inconclusive phenotype-guided specific single gene sequencing.

View Article and Find Full Text PDF

The use of F-wave study may help to gain insight into electrophysiological significance of spinocerebellar Ataxias (SCAs). Particularly, the difference of F-wave features between Chinese SCA1, SCA2 and SCA3 patients were scarcely reported. 20 SCA1, 20 SCA2, 46 SCA3 patients and 30 healthy controls underwent nerve (median, ulnar, tibial) conduction and F-wave studies, and electrophysiology parameters were compared between them.

View Article and Find Full Text PDF

Global and Regional Brain Grey and White Matter Morphometry Alterations in Type 1, 2, and 3 Spinocerebellar Ataxias (SCAs) Patients.

Cerebellum

December 2024

Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, The Second Zhongshan Road, Guangzhou, 518000, Guangdong, People's Republic of China.

Spinocerebellar ataxias (SCAs) types 1, 2, and 3 are the most common subtypes of SCAs. However, the atrophy patterns of these three subtypes still need to be fully clarified. In this study, a total of 130 genetically confirmed SCA patients (SCA1: n = 16; SCA2: n = 13; symptomatic SCA3: n = 76; pre-symptomatic SCA3: n = 25) along with 65 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Objective: Late-onset cerebellar ataxia (LOCA) is a slowly progressive cerebellar disorder with symptom onset ≥30years of age. Intronic tandem repeat expansions (TREs) in RFC1 and FGF14 have recently emerged as common causes of LOCA. The relative contribution of classic vs.

View Article and Find Full Text PDF

Under stress, Purkinje cells (PCs) undergo a variety of reactive morphological changes. These can include swellings of neuronal processes. While axonal swellings, "torpedoes", have been well-studied, dendritic swellings (DS) have not been the centerpiece of study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!