Well over a century ago, Otto Frank, working at Carl Ludwig's Institute of Physiology in Munich, studying the isolated, blood-perfused, frog heart preparation, demonstrated that there are two distinct pressure-volume relations in the heart: one for isovolumic twitches and a second (located inferiorly) for afterloaded twitches. Whereas Starling, working at UCL two decades later, referenced Frank's publication (to the extent of re-printing its seminal Figure), he appeared not to have tested Frank's finding. Hence, he remained silent with respect to Franks' contention that cardiac pressure-volume relations are contraction-mode-dependent. Instead, he concluded that "The energy of contraction, however measured, is a function of the length of the muscle fibre" - a conclusion that has become known (at least in the English-speaking world) as 'Starling's Law of the Heart'. This provides us with at least three conundra: (i) why did Starling present only one pressure-volume relation whereas Frank had previously found two, (ii) why, then, do we speak of The Frank-Starling relation, and (iii) how did Frank become largely forgotten for twelve decades among English speakers? This review will attempt to address and comment on these conundra.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbiomolbio.2020.04.003 | DOI Listing |
The high compliance of the urinary bladder during filling is essential for its proper function, enabling it to accommodate significant volumetric increases with minimal rise in transmural pressure. This study aimed to elucidate the physical mechanisms underlying this phenomenon by analyzing the ex vivo filling process in rat from a fully voided state to complete distension, without preconditioning, using three complementary imaging modalities. High-resolution micro-CT at 10.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA.
Stomata control plant water loss and photosynthetic carbon gain. Developing more generalized and accurate stomatal models is essential for earth system models and predicting responses under novel environmental conditions associated with global change. Plant optimality theories offer one promising approach, but most such theories assume that stomatal conductance maximizes photosynthetic net carbon assimilation subject to some cost or constraint of water.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Department of Hematology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-Ku, 252-0374, Sagamihara, Kanagawa, Japan.
Mean circulatory filling pressure, venous return curve, and Guyton's graphical analysis are basic concepts in cardiovascular physiology. However, some medical students may not know how to view and interpret or understand them adequately. To deepen students' understanding of the graphical analysis, in place of having to perform live animal experiments, we developed an interactive cardiovascular simulator, as a self-learning tool, as a web application.
View Article and Find Full Text PDFCardiovasc Diagn Ther
December 2024
Cardiovascular Center, St. Luke's International Hospital, Tokyo, Japan.
Right ventricular (RV) dysfunction after biventricular repair is critical in most adults with congenital heart disease (ACHD). Conventional 2D magnetic resonance imaging (MRI) measurement is considered as a 'gold standard' for RV evaluation; however, addition information on ACHD after biventricular repair is sometimes required. The reasons why adjunctive information is required is as follows: (I) to evaluate the severity of cardiac burden in symptomatic patients with normal RV size and ejection fraction (EF), (II) to determine the optimal timing of invasive treatments in asymptomatic ones, and (III) to detect proactively a potential cardiac burden leading to ventricular deterioration, from a fluid dynamics perspective.
View Article and Find Full Text PDFIntroduction: Chronic kidney disease (CKD) and heart failure with preserved ejection fraction (HFpEF) are more prevalent in the elderly. There is a lack of large animal models that allow the study of the impact of age on CKD and HFpEF in a translational fashion. This manuscript reports the first large preclinical model of CKD-HFpEF and metabolic derangements in naturally aged swine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!