Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop.

Trends Plant Sci

NovoCrops Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Electronic address:

Published: June 2020

Shifting the life cycle of grain crops from annual to perennial would usher in a new era of agriculture that is more environmentally friendly, resilient to climate change, and capable of soil carbon sequestration. Despite decades of work, transforming the annual grain crop wheat (Triticum aestivum) into a perennial has yet to be realized. Direct domestication of wild perennial grass relatives of wheat, such as Thinopyrum intermedium, is an alternative approach. Here we highlight protein coding sequences in the recently released T. intermedium genome sequence that may be orthologous to domestication genes identified in annual grain crops. Their presence suggests a roadmap for the accelerated domestication of this plant using new breeding technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tplants.2020.02.004DOI Listing

Publication Analysis

Top Keywords

roadmap accelerated
8
accelerated domestication
8
grain crop
8
grain crops
8
annual grain
8
domestication
4
domestication emerging
4
perennial
4
emerging perennial
4
grain
4

Similar Publications

Research infrastructure is critical for advancing knowledge of health and disease, fostering innovation through world-class, cutting-edge facilities and technical expertise. Phenomics Australia is Australia's national research infrastructure provider responsible for accelerating advances in mammalian functional genomics and precision medicine through the development and delivery of services and expertise in engineered disease model production, phenotyping, and biobanking. These capabilities and resources are enabled by Australia's National Collaborative Research Infrastructure Strategy and primarily support health and medical research for significant healthcare and economic benefits.

View Article and Find Full Text PDF

-related disorder (SRD) is a developmental and epileptic encephalopathy caused by a disruption of the gene. At the beginning of 2024, it is one of many rare monogenic brain disorders without disease-modifying treatments, but that is changing. This article chronicles the last 5 years, beginning when treatments for SRD were not publicly in development, to the start of 2024 when many SRD-specific treatments are advancing.

View Article and Find Full Text PDF

Priority Clinical Actions for Outpatient Management of Nonhospitalized Traumatic Brain Injury.

J Neurotrauma

January 2025

Zuckerberg San Francisco General Hosptial and Trauma Center, University of California, San Francisco, San Francisco, California, USA.

Outpatient care following nonhospitalized traumatic brain injury (TBI) is variable, and often sparse. The National Academies of Sciences, Engineering, and Medicine's 2022 report on highlighted the need to improve the consistency and quality of TBI care in the community. In response, the present study aimed to identify existing evidence-based guidance and specific clinical actions over the days to months following nonhospitalized TBI that should be prioritized for implementation in primary care.

View Article and Find Full Text PDF

Empirical investigation of the quintillion-scale, functionally diverse antibody repertoires that can be generated synthetically or naturally is critical for identifying potential biotherapeutic leads, yet remains burdensome. We present high-throughput nanophotonics- and bioprinter-enabled screening (HT-NaBS), a multiplexed assay for large-scale, sample-efficient, and rapid characterization of antibody libraries. Our platform is built upon independently addressable pixelated nanoantennas exhibiting wavelength-scale mode volumes, high-quality factors (high-Q) exceeding 5000, and pattern densities exceeding one million sensors per square centimeter.

View Article and Find Full Text PDF

The abundant demand for deep learning compute resources has created a renaissance in low-precision hardware. Going forward, it will be essential for simulation software to run on this new generation of machines without sacrificing scientific fidelity. In this paper, we examine the precision requirements of a representative kernel from quantum chemistry calculations: the calculation of the single-particle density matrix from a given mean-field Hamiltonian (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!