This paper examines the reliability of Structure from Motion (SfM) photogrammetry as a tool in the capture of forensic footwear marks. This is applicable to photogrammetry freeware DigTrace but is equally relevant to other SfM solutions. SfM simply requires a digital camera, a scale bar, and a selection of oblique photographs of the trace in question taken at the scene. The output is a digital three-dimensional point cloud of the surface and any plastic trace thereon. The first section of this paper examines the reliability of photogrammetry to capture the same data when repeatedly used on one impression, while the second part assesses the impact of varying cameras. Using cloud to cloud comparisons that measure the distance between two-point clouds, we assess the variability between models. The results highlight how little variability is evident and therefore speak to the accuracy and consistency of such techniques in the capture of three-dimensional traces. Using this method, 3D footwear impressions can, in many substrates, be collected with a repeatability of 97% with any variation between models less than ~0.5 mm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1556-4029.14455 | DOI Listing |
Oral Maxillofac Surg
January 2025
Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
Purpose: This study aimed to clarify the applicability of smartphone-based three-dimensional (3D) surface imaging for clinical use in oral and maxillofacial surgery, comparing two smartphone-based approaches to the gold standard.
Methods: Facial surface models (SMs) were generated for 30 volunteers (15 men, 15 women) using the Vectra M5 (Canfield Scientific, USA), the TrueDepth camera of the iPhone 14 Pro (Apple Inc., USA), and the iPhone 14 Pro with photogrammetry.
Cureus
December 2024
Department of Prosthetic Dental Sciences, College of Dentistry, Jouf University, Sakaka, SAU.
Introduction: In contemporary clinical settings, three-dimensional (3D) models have become an integral component of daily practice. Photogrammetry, a novel method in clinical practice, enables the creation of precise 3D models from small objects while maintaining their original shape and size.
Aim: To evaluate the accuracy and reliability of digital models (DM) generated using photogrammetry techniques compared to traditional gypsum models (GM) and to investigate the feasibility of utilizing free software for processing and manipulating digital dental models.
Acta Orthop
January 2025
Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg; Department of Orthopaedics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
Background And Purpose: Computed tomography radiostereometric analysis (CT-RSA) assesses implant micromovements using low-dose CT scans. We aimed to investigate whether CT-RSA is comparable to marker-based radiostereometric analysis (RSA) measuring early femoral head migration in cemented stems. We hypothesized that CT-RSA is comparable to marker-based RSA in evaluating femoral head subsidence.
View Article and Find Full Text PDFActa Orthop
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands.
Background And Purpose: This study updates 2 parallel systematic reviews and meta-analyses from 2012, which established the 1-year radiostereometric (RSA) migration thresholds for tibial components of total knee replacements (TKR) based on the risk of late revision for aseptic loosening from survival studies. The primary aim of this study was to determine the (mis)categorization rate of the 2012 thresholds using the updated review as a validation dataset. Secondary aims were evaluation of 6-month migration, mean continuous (1- to 2-year) migration, and fixation-specific thresholds for tibial component migration.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
Objectives: To evaluate the validity and reliability of smartphone-generated three-dimensional (3D) facial images for routine evaluation of the oronasal region of patients with cleft by comparing their accuracy to that of direct anthropometry (DA) and 3dMD.
Materials And Methods: Eighteen soft-tissue facial landmarks were manually labelled on each of the 17 (9 males and 8 females; mean age 23.3 ± 5.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!