A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of hypertension, hyperglycemia and dyslipidemia from retinal fundus photographs via deep learning: A cross-sectional study of chronic diseases in central China. | LitMetric

Retinal fundus photography provides a non-invasive approach for identifying early microcirculatory alterations of chronic diseases prior to the onset of overt clinical complications. Here, we developed neural network models to predict hypertension, hyperglycemia, dyslipidemia, and a range of risk factors from retinal fundus images obtained from a cross-sectional study of chronic diseases in rural areas of Xinxiang County, Henan, in central China. 1222 high-quality retinal images and over 50 measurements of anthropometry and biochemical parameters were generated from 625 subjects. The models in this study achieved an area under the ROC curve (AUC) of 0.880 in predicting hyperglycemia, of 0.766 in predicting hypertension, and of 0.703 in predicting dyslipidemia. In addition, these models can predict with AUC>0.7 several blood test erythrocyte parameters, including hematocrit (HCT), mean corpuscular hemoglobin concentration (MCHC), and a cluster of cardiovascular disease (CVD) risk factors. Taken together, deep learning approaches are feasible for predicting hypertension, dyslipidemia, diabetes, and risks of other chronic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224473PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233166PLOS

Publication Analysis

Top Keywords

chronic diseases
16
retinal fundus
12
hypertension hyperglycemia
8
hyperglycemia dyslipidemia
8
deep learning
8
cross-sectional study
8
study chronic
8
central china
8
models predict
8
risk factors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!