A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing planting geometry for barley-Egyptian clover intercropping system in semi-arid sub-tropical climate. | LitMetric

Intercropping legumes with cereals has been a common cropping system in short-season rainfed environments due to its increased productivity and sustainability. Intercropping barley (Hordeum vulgare L.) with Egyptian clover (Trifolium alexandrinum L.) could increase the grain yield of barley and improve resource use efficiency of the intercropping system. However, non-optimum planting geometry has been a hurdle in the adaptation of barley-based cropping systems. This study was aimed at optimizing the planting geometry, and assess the productivity and profitability of barley-Egyptian clover intercropping system. Ten different planting geometries, differing in number of rows of barley, width and number of irrigation furrows and planting method were tested. Intercropping barley with Egyptian clover improved 56-68% grain yield of barley compared with mono-cropped barley. Barley remained dominant crop in terms of aggressiveness, relative crowding coefficient and competitive ratio. The amount of water used was linearly increased with increasing size of barley strip from 3 to 8 rows. The highest water use efficiency (4.83 kg/cf3) was recorded for 8-row barley strip system with 120 cm irrigation furrows compared to rest of the planting geometries. In conclusion, 8-rows of barley planted on beds with Egyptian clover in 120 cm irrigation furrows had the highest net income and cost benefit ratio. Therefore, it is recommended that this planting geometry can be used for better economic returns of barley-Egyptian clover intercropping system. However, barley strips with >8 rows were not included in this study, which is limitation of the current study. Therefore, future studies with >8 barley rows in strip should be conducted to infer the economic feasibility and profitability of wider barley strips.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7224480PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233171PLOS

Publication Analysis

Top Keywords

planting geometry
16
intercropping system
16
barley
13
barley-egyptian clover
12
clover intercropping
12
egyptian clover
12
irrigation furrows
12
optimizing planting
8
intercropping barley
8
grain yield
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!