The self-assembly of molecules into a well-ordered structure is one of the most important processes in fabricating sophisticated materials. Here, we show that polymer chains can be self-assembled, distinguishing their direction (parallel or antiparallel), and could be a new useful scaffold for self-assembly in a controlled direction. The system that was used was a stereocomplex (SC) formation of linear and cyclic polylactide (PLA) stereoblock copolymers with a parallel and antiparallel chain arrangement in a Langmuir monolayer. The linear and cyclic stereoblock copolymers with a parallel arrangement formed a well-ordered lamellar SC in the first and second layers upon compression, but the linear and cyclic stereoblock copolymers with an antiparallel arrangement did not form a first-layer lamella and instead formed only the second-layer lamella. These results were only rationally explained by assuming that the enantiomeric PLA chains selectively assembled in a parallel direction, not in an antiparallel direction, in the SC. A simple polymer chain could be self-assembled, distinguishing the direction without a specific interaction group in it.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c00769DOI Listing

Publication Analysis

Top Keywords

linear cyclic
16
stereoblock copolymers
16
copolymers parallel
12
parallel antiparallel
12
cyclic polylactide
8
antiparallel chain
8
chain arrangement
8
self-assembled distinguishing
8
distinguishing direction
8
cyclic stereoblock
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!