Knockdown of IP3R1 disrupts tubulobulbar complex-ectoplasmic reticulum contact sites and the morphology of apical processes encapsulating late spermatids†.

Biol Reprod

Life Sciences Institute and Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.

Published: August 2020

Tubulobulbar complexes (TBCs) internalize intercellular junctions during sperm release. One of the characteristic features of TBCs is that they form "bulbs" or swollen regions that have well-defined membrane contact sites (MCS) with adjacent cisternae of endoplasmic reticulum. Previously, we have localized the IP3R calcium channel to the TBC bulb-ER contacts and have hypothesized that fluctuations in local calcium levels may facilitate the maturation of TBC bulbs into putative endosomes, or alter local actin networks that cuff adjacent tubular regions of the TBCs. To test this, we injected the testes of Sprague Dawley rats with small interfering RNAs (siRNAs) against IP3R1 and processed the tissues for either western blot, immunofluorescence, or electron microscopy. When compared to control testes injected with nontargeting siRNAs, Sertoli cells in knocked-down testes showed significant morphological alterations to the actin networks including a loss of TBC actin and the appearance of ectopic para-crystalline actin bundles in Sertoli cell stalks. There also was a change in the abundance and distribution of TBC-ER contact sites and large internalized endosomes. This disruption of TBCs resulted in delay of the withdrawal of apical processes away from spermatids and in spermiation. Together, these findings are consistent with the hypothesis that calcium exchange at TBC-ER contacts is involved both in regulating actin dynamics at TBCs and in the maturing of TBC bulbs into endosomes. The results are also consistent with the hypothesis that TBCs are part of the sperm release mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1093/biolre/ioaa074DOI Listing

Publication Analysis

Top Keywords

contact sites
12
apical processes
8
sperm release
8
tbc bulbs
8
actin networks
8
consistent hypothesis
8
tbcs
6
actin
5
knockdown ip3r1
4
ip3r1 disrupts
4

Similar Publications

Cells form multiple, molecularly distinct membrane contact sites (MCSs) between organelles. Despite knowing the molecular identity of several of these complexes, little is known about how MCSs are coordinately regulated in space and time to promote organelle function. Here, we examined two well-characterized mitochondria-ER MCSs - the ER-Mitochondria encounter structure (ERMES) and the mitochondria-ER-cortex anchor (MECA).

View Article and Find Full Text PDF

Mitochondria and lysosomes are critical for neuronal homeostasis, as highlighted by their dysfunction in various neurological diseases. Recent studies have identified dynamic membrane contact sites between mitochondria and lysosomes, independent of mitophagy and the lysosomal degradation of mitochondrial-derived vesicles (MDVs), allowing bidirectional crosstalk between these cell compartments, the dynamic regulation of organelle networks, and substance exchanges. Emerging evidence suggests that abnormalities in mitochondria-lysosome contact sites (MLCSs) contribute to neurological diseases, including Parkinson's disease, Charcot-Marie-Tooth (CMT) disease, lysosomal storage diseases, and epilepsy.

View Article and Find Full Text PDF

Background: Because cirrhosis is often unrecognized, we aimed to develop a stepwise screening algorithm for cirrhosis in the Veterans Health Administration (VHA) and assess this approach's feasibility and acceptability.

Methods: VHA hepatology clinicians ("champions") were invited to participate in a pilot program from June 2020 to October 2022. The VHA Corporate Data Warehouse was queried to identify Veterans with possible undiagnosed cirrhosis using Fibrosis-4 (FIB-4) ≥ 3.

View Article and Find Full Text PDF

Water conveyance channels in cold and arid regions pass through several saline-alkali soil areas. Canal water leakage exacerbates the salt expansion traits of such soil, damaging canal slope lining structures. To investigate the mechanical properties of saline clay, this study conducted indoor tests, including direct shear, compression, and permeation tests, and scanning electron microscopy (SEM) analysis of soil samples from typical sites.

View Article and Find Full Text PDF

In Situ-Forming, Adhesive, and Antioxidant Chitosan Hydrogels for Accelerated Wound Healing.

Biomacromolecules

January 2025

State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.

Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!